Westenberg D J, Gunsalus R P, Ackrell B A, Sices H, Cecchini G
Department of Microbiology and Molecular Genetics, University of California, Los Angeles 90024.
J Biol Chem. 1993 Jan 15;268(2):815-22.
Escherichia coli fumarate reductase (FRD) is a four-subunit enzyme that catalyzes the terminal step in anaerobic respiration to fumarate. The hydrophobic FrdC and FrdD subunits anchor the FrdA and FrdB catalytic subunits to the inner surface of the cytoplasmic membrane and are required for the enzyme to interact with quinones. Thirty-five single-site mutations were constructed in the FrdC and FrdD polypeptides by site-directed mutagenesis. Each mutant enzyme was characterized for its ability to catalyze quinone oxidation and reduction and to support growth of E. coli DW35 (delta frdABCD sdhC::kan) under selective conditions requiring functional enzyme. Replacement of FrdCE29 with Asp, Leu, Lys, or Phe had a deleterious effect both on quinol oxidase and quinone reductase activities. Substitution of FrdCH82 with Arg, Leu, Tyr, or Glu also decreased menaquinol oxidase activity, but had variable effects on the reverse reaction, the reduction of ubiquinone. Data are presented to support the hypothesis that the positive charge at FrdCH82 is required for stabilization of the quinone radical intermediate and the negative charge at FrdCE29 for deprotonation of menaquinol. Other critical amino acids identified in FrdC included Ala-32, Phe-38, Trp-86, Phe-87, and in FrdD residues Phe-57, Gln-59, Ser-60, and His-80. The established roles of such residues in the QA and QB sites of the photosynthetic reaction center would suggest a similar type of structure operative in the FRD complex. In such a model, Glu-29, Ala-32, His-82, Trp-86 of FrdC and His-80 of FrdD are considered participants in a QB-type site, and FrdD Phe-57, Gln-59, and Ser-60 components in an apolar QA-type site.
大肠杆菌延胡索酸还原酶(FRD)是一种四亚基酶,催化厌氧呼吸的最后一步生成延胡索酸。疏水的FrdC和FrdD亚基将FrdA和FrdB催化亚基锚定在细胞质膜的内表面,并且是该酶与醌相互作用所必需的。通过定点诱变在FrdC和FrdD多肽中构建了35个单点突变。对每个突变酶进行了表征,以确定其催化醌氧化和还原以及在需要功能性酶的选择性条件下支持大肠杆菌DW35(δfrdABCD sdhC::kan)生长的能力。用天冬氨酸、亮氨酸、赖氨酸或苯丙氨酸取代FrdCE29对喹啉氧化酶和醌还原酶活性均有有害影响。用精氨酸、亮氨酸、酪氨酸或谷氨酸取代FrdCH82也降低了甲基萘醌氧化酶活性,但对反向反应(泛醌的还原)有不同影响。提供的数据支持这样的假设,即FrdCH82处的正电荷是醌自由基中间体稳定所必需的,而FrdCE29处的负电荷是甲基萘醌去质子化所必需的。在FrdC中鉴定出的其他关键氨基酸包括Ala-32、Phe-38、Trp-86、Phe-87,在FrdD残基中包括Phe-57、Gln-59、Ser-60和His-80。这些残基在光合反应中心的QA和QB位点中已确定的作用表明在FRD复合物中存在类似类型的结构。在这样的模型中,FrdC的Glu-29、Ala-32、His-82、Trp-86和FrdD的His-80被认为是QB型位点的参与者,而FrdD的Phe-57、Gln-59和Ser-60是一个非极性QA型位点的组成部分。