Muga A, Arrondo J L, Bellon T, Sancho J, Bernabeu C
Department of Biochemistry, Faculty of Science, University of the Basque Country, Bilbao, Spain.
Arch Biochem Biophys. 1993 Jan;300(1):451-7. doi: 10.1006/abbi.1993.1061.
The effect of sodium dodecyl sulfate (SDS) on enzyme activity, electrophoretic behavior, and conformation of Escherichia coli beta-galactosidase is presented. Fourier-transform infrared spectroscopy (FT-IR), previously used to study the structure of native beta-galactosidase has been applied to examine the detergent effects on the enzyme. At 20 degrees C, the presence of 1% SDS does not cause appreciable changes in the secondary structure, and enzyme activity is preserved; however, 10% SDS produces complete enzyme inactivation and FT-IR spectroscopy indicates a concomitant change in conformation. Thermal denaturation of beta-galactosidase starts at approximately 53 degrees C in the absence and at approximately 46 degrees C in the presence of 1% SDS, indicating tertiary structure changes; also, a good correlation between structural (FT-IR) and functional (Arrhenius plots) data is observed. The secondary structure of thermally denatured beta-galactosidase contains mainly extended structures, and intermolecular interactions produce protein aggregation. In the presence of 10% SDS, however, the hydrophobic segments of the protein are stabilized by SDS into helical structures without protein aggregation. At 30 degrees C, in the presence of 1% SDS, two protein bands are resolved by gel electrophoresis, only one of them being active. A model for SDS-galactosidase interaction is proposed, according to which, at low surfactant concentrations, SDS molecules bind the outer surface of the protein, without affecting the protein core. Higher detergent concentrations produce a larger conformational change involving enzyme inactivation and increased accessibility of the solvent to the protein core. Increasing temperature in the presence of 10% SDS leads to a facilitated access of surfactant molecules to the inner protein regions and to an increase of the beta-galactosidase alpha-helical content.
本文介绍了十二烷基硫酸钠(SDS)对大肠杆菌β-半乳糖苷酶的酶活性、电泳行为和构象的影响。傅里叶变换红外光谱(FT-IR)此前已用于研究天然β-半乳糖苷酶的结构,现应用于检测洗涤剂对该酶的影响。在20℃时,1% SDS的存在不会引起二级结构的明显变化,酶活性得以保留;然而,10% SDS会导致酶完全失活,FT-IR光谱表明构象随之发生变化。在不存在SDS时,β-半乳糖苷酶的热变性起始温度约为53℃,而在存在1% SDS时约为46℃,这表明三级结构发生了变化;此外,还观察到结构(FT-IR)数据与功能(阿累尼乌斯图)数据之间具有良好的相关性。热变性β-半乳糖苷酶的二级结构主要包含伸展结构,分子间相互作用会导致蛋白质聚集。然而,在存在10% SDS的情况下,蛋白质的疏水片段会被SDS稳定成螺旋结构,且不会发生蛋白质聚集。在30℃时,在存在1% SDS的情况下,通过凝胶电泳可分辨出两条蛋白带,其中只有一条具有活性。本文提出了一个SDS与半乳糖苷酶相互作用的模型,根据该模型,在低表面活性剂浓度下,SDS分子结合在蛋白质的外表面,而不影响蛋白质核心。较高的洗涤剂浓度会导致更大的构象变化,包括酶失活以及溶剂对蛋白质核心的可及性增加。在存在10% SDS的情况下升高温度会使表面活性剂分子更容易进入蛋白质内部区域,并增加β-半乳糖苷酶的α-螺旋含量。