Suppr超能文献

使用分类临床标志物制定预测规则并评估观察模式:两种互补程序。

Developing prediction rules and evaluating observation patterns using categorical clinical markers: two complementary procedures.

作者信息

McConnochie K M, Roghmann K J, Pasternack J

机构信息

Department of Pediatrics, University of Rochester School of Medicine, New York.

出版信息

Med Decis Making. 1993 Jan-Mar;13(1):30-42. doi: 10.1177/0272989X9301300105.

Abstract

Substantial uncertainty often remains at the time that important diagnostic or therapeutic decisions must be made, despite the availability of multiple clinical indicators. Multiple indicators may be used to define observation patterns that are associated with the presence or absence of disease. Clinical prediction rules based on groups of observation patterns have been used to quantify probabilities and reduce error rates for some medical problems, but efficient use of multiple indicators remains a major challenge in medical practice. Medical outcomes and clinical observations are frequently categorical. Two statistical techniques appropriate for generating prediction rules from categorical data are logit analysis (LA) and recursive partitioning analysis (RPA). LA and RPA were compared in evaluating observation patterns for fractures among 666 upper-extremity injuries in children, and in developing prediction rules for selective radiographic assessment. Fracture estimates and error reductions provided by RPA and LA were very similar. Each technique generated a set of prediction rules with a range of misclassification probabilities, and evaluated the probabilities of fracture for all observation patterns. LA used more information than RPA in observation pattern evaluations, however, and provided fracture estimates specific to each pattern. With currently available statistical software, RPA output provides better statistical guidance in generating prediction rules, whereas LA provides more statistical information of use in evaluating observation patterns. LA warrants attention similar to that conferred on RPA. It appears that complementary use of LA and RPA would be valuable in developing clinical guidelines.

摘要

尽管有多种临床指标可供使用,但在必须做出重要诊断或治疗决策时,往往仍存在很大的不确定性。多个指标可用于定义与疾病存在与否相关的观察模式。基于观察模式组的临床预测规则已被用于量化概率并降低某些医疗问题的错误率,但有效使用多个指标在医疗实践中仍然是一项重大挑战。医疗结果和临床观察通常是分类的。两种适用于从分类数据生成预测规则的统计技术是逻辑分析(LA)和递归划分分析(RPA)。对LA和RPA在评估666例儿童上肢损伤骨折的观察模式以及制定选择性影像学评估的预测规则方面进行了比较。RPA和LA提供的骨折估计和误差降低非常相似。每种技术都生成了一组具有一系列错误分类概率的预测规则,并评估了所有观察模式的骨折概率。然而,在观察模式评估中,LA比RPA使用了更多信息,并提供了每种模式特有的骨折估计。使用当前可用的统计软件,RPA输出在生成预测规则时提供了更好的统计指导,而LA在评估观察模式时提供了更多有用的统计信息。LA值得获得与RPA类似的关注。看来,LA和RPA的互补使用在制定临床指南方面将是有价值的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验