Gavin P R, Huiskamp R, Wheeler F J, Kraft S L, DeHaan C E
Department of Veterinary Clinical Medicine and Surgery, Washington State University, Pullman.
Strahlenther Onkol. 1993 Jan;169(1):48-56.
Irradiation of the canine head following intravenous Na2B12H11SH (BSH) administration has provided useful information concerning the tolerance of skin and brain to the resultant complex form of irradiation. The effect of the boron capture reaction in skin and brain has provided estimates of the influence of the microscopic dosimetry involved. Dogs irradiated with the epithermal beam alone provided valuable insight into the relative biological effectiveness (RBE) of the fast neutron component (> 10 keV) of the epithermal beam. When compared with literature values for X-rays for the occurrence of skin necrosis in dogs, an RBE of 4.5 was derived. Previous pharmacokinetic data concerning the distribution of Na2B12H11SH (BSH) to blood and brain has been used to obtain input parameters for computer models of the microvasculature of the brain. Monte Carlo computer models were used to simulate the microscopic distribution of BSH in the normal brain. The term compound factor describes the product of the microscopic boron fission fragment dose hitting the nucleus and the relative biologic effectiveness divided by the macroscopic equilibrium dose of the boron reaction in the tissue of interest. The computed compound factor for Na2B12H11SH (BSH) in normal brain was 0.37. This factor agreed very well with the value of 0.32 obtained for the brain necrosis with the dog irradiations. The compound factor for the dog's skin was experimentally derived from the dog experiments and was equal to 0.5.