Lundell T, Wever R, Floris R, Harvey P, Hatakka A, Brunow G, Schoemaker H
Department of Applied Chemistry and Microbiology, University of Helsinki, Finland.
Eur J Biochem. 1993 Feb 1;211(3):391-402. doi: 10.1111/j.1432-1033.1993.tb17562.x.
The catalytic cycle of lignin peroxidase (LiP, ligninase) isozyme L3 from the white-rot fungus Phlebia radiata was investigated using stopped-flow techniques. Veratryl (3,4-dimethoxybenzyl) alcohol and a lignin model compound, non-phenolic beta-O-4 dimer 1-(3,4-dimethoxyphenyl)-2-(2-methoxyphenoxy)propane-1,3-diol, were used as electron donors. This is the first report on the detailed kinetic analysis of a LiP-catalysed C alpha-C beta bond cleavage of the dimer, representing the major depolymerisation reaction in the lignin polymer. The native enzyme showed a typical heme peroxidase absorbance spectrum with a Soret maximum at 407 nm. Following the reaction with H2O2, the Soret band decreased in absorbance, shifted to 403 nm and then to 421 nm, demonstrating the formation of compound I followed by the formation of compound II, respectively. Similar results have been reported for the LiP from Phanerochaete chrysosporium upon reaction with H2O2. However, compound I of L3 was more stable in the absence of additional electron donors. The second-order rate constant of compound I formation by H2O2 was determined to be 6 x 10(5) M-1 s-1 and was the same at pH 3.0 and 6.0. Compound I was rapidly reduced to compound II and further to native enzyme when either veratryl alcohol or the beta-O-4 dimer was supplied as electron donor and in both cases veratraldehyde appeared as the major product. At pH 6.0, the second-order rate constant for compound II formation was similar with either veratryl alcohol or the beta-O-4 dimer (6.7 x 10(3) and 6.5 x 10(3) M-1 s-1, respectively). At pH 3.0 formation of compound II with either reductant proceeded so rapidly that determination of the respective rate constants was not possible. The results point to identical catalytic cycles of L3 with veratryl alcohol or the beta-O-4 dimer involving both compounds I and II as intermediates and participation of the same veratryl alcohol radical as the most appropriate reductant for compound II. Chemical evidence of such a radical, formed after the initial LiP-catalysed one-electron oxidation of beta-O-4 dimeric lignin models, is presented in a separate article [Lundell, T., Schoemaker, H., Hatakka, A. & Brunow, G. (1993) Holzforschung, in the press]. The catalytic redox-cycle and the oxidation mechanism presented here reconcile seemingly contradictory results obtained in previous studies on LiP kinetics during the last decade.
利用停流技术研究了白腐菌辐射状革菌中木质素过氧化物酶(LiP,木质素酶)同工酶L3的催化循环。藜芦醇(3,4-二甲氧基苄醇)和一种木质素模型化合物,非酚型β-O-4二聚体1-(3,4-二甲氧基苯基)-2-(2-甲氧基苯氧基)丙烷-1,3-二醇,被用作电子供体。这是关于LiP催化该二聚体的Cα-Cβ键断裂的详细动力学分析的首次报道,该键断裂代表木质素聚合物中的主要解聚反应。天然酶呈现典型的血红素过氧化物酶吸收光谱,其Soret峰在407nm处。与H2O2反应后,Soret带的吸光度降低,先移至403nm,然后移至421nm,分别表明形成了化合物I和化合物II。关于黄孢原毛平革菌的LiP与H2O2反应也有类似结果的报道。然而,在没有额外电子供体的情况下,L3的化合物I更稳定。H2O2形成化合物I的二级速率常数测定为6×10(5) M-1 s-1,在pH 3.0和6.0时相同。当以藜芦醇或β-O-4二聚体作为电子供体时,化合物I迅速还原为化合物II,并进一步还原为天然酶,且在两种情况下藜芦醛均作为主要产物出现。在pH 6.0时,用藜芦醇或β-O-4二聚体形成化合物II的二级速率常数相似(分别为6.7×10(3) 和6.5×10(3) M-1 s-1)。在pH 3.0时,用任何一种还原剂形成化合物II的过程都非常迅速,以至于无法测定各自的速率常数。结果表明,L3与藜芦醇或β-O-4二聚体具有相同的催化循环,涉及化合物I和化合物II作为中间体,并且相同的藜芦醇自由基作为化合物II最合适的还原剂参与反应。在另一篇文章[伦德尔,T.,舍马克尔,H.,哈塔卡,A. & 布鲁诺,G.(1993年)《木材研究》,即将发表]中给出了这种自由基的化学证据,该自由基是在LiP催化β-O-4二聚体木质素模型的初始单电子氧化后形成的。这里提出的催化氧化还原循环和氧化机制协调了过去十年中关于LiP动力学的先前研究中看似矛盾的结果。