Suppr超能文献

Phospholipid methylation in brain membrane preparations: kinetic mechanism.

作者信息

Reitz R C, Mead D J, Welch W H

机构信息

Department of Biochemistry, School of Medicine, University of Nevada, Reno 89557.

出版信息

Biochim Biophys Acta. 1993 Feb 24;1166(2-3):139-44. doi: 10.1016/0005-2760(93)90089-r.

Abstract

The methylation reactions which convert phosphatidylethanolamine (PE) to phosphatidylcholine (PC) have been studied kinetically using exogenously added intermediates and crude membrane preparations from brain. The addition of exogenous PE resulted in no change in the methylation rates compared to that of endogenous PE. The addition of the two intermediates, monomethylphosphatidylethanolamine (PMME) and dimethylphosphatidylethanolamine (PDME), resulted in significantly increased rates of methylation and allowed the kinetic analysis of these latter two methylation reactions. The mechanism for this enzyme appears to be similar to human RBC (Reitz et al. (1989) J. Biol. Chem. 264, 8097-8106) which was a rapid-equilibrium random Bi-Bi sequential mechanism. There were some slight differences between the brain enzyme and that from the RBC, but there is little reason to suggest a fundamentally different mechanism. It is more likely that the differences may relate to an additional dead-end complex for the enzyme from brain such that saturation with AdoMet cannot eliminate AdoHcy inhibition. The KM values for the two phospholipid substrates were 41-44 microM and 39 microM for the methylation of PMME and PDME, respectively. The KM for S-adenosylmethionine (AdoMet) was 7-9 microM with PMME and 4 microM with PDME as the other substrates. The Ki(lipid) varied from 54 microM with PMME to 225 microM with PDME, and the Ki(AdoMet) was 11 microM with PMME and 21 microM with PDME. The product from the use of AdoMet, S-adenosylhomocysteine (AdoHcy), was shown to be a noncompetitive inhibitor of both lipid substrates as well as AdoMet. The methylation of PMME was somewhat higher in cerebellum and brain stem compared to cortex and striatum, but the methylation of PDME was similar in cerebellum, brain stem and cortex.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验