Suppr超能文献

心脏磁共振成像中自动边界检测的多中心试验。

Multicenter trial of automated border detection in cardiac MR imaging.

作者信息

Fleagle S R, Thedens D R, Stanford W, Pettigrew R I, Reichek N, Skorton D J

机构信息

Cardiovascular Center, College of Medicine, University of Iowa, Iowa City 52242-1182.

出版信息

J Magn Reson Imaging. 1993 Mar-Apr;3(2):409-15. doi: 10.1002/jmri.1880030217.

Abstract

The purpose of the present study was to evaluate the robustness of a method of automated border detection in cardiac magnetic resonance (MR) imaging. Thirty-seven short-axis spin-echo cardiac images were acquired from three medical centers, each with its own image-acquisition protocol. Endo- and epicardial borders and areas were derived from these images with a graph-searching-based method of edge detection. Computer results were compared with observer-traced borders. The method accurately defined myocardial borders in 36 of 37 images (97%), with excellent agreement between computer- and observer-derived endocardial and epicardial areas (correlation coefficients, .94-.99). The algorithm worked equally well for data from all three centers, despite differences in image-acquisition protocols, MR systems, and field strengths. These data suggest that a method of computer-assisted edge detection based on graph-searching principles yields endocardial and epicardial areas that correlate well with those derived by an independent observer.

摘要

本研究的目的是评估心脏磁共振成像中自动边界检测方法的稳健性。从三个医疗中心采集了37幅短轴自旋回波心脏图像,每个中心都有自己的图像采集方案。使用基于图形搜索的边缘检测方法从这些图像中得出心内膜和心外膜边界及面积。将计算机结果与观察者描绘的边界进行比较。该方法在37幅图像中的36幅(97%)中准确地定义了心肌边界,计算机得出的心内膜和心外膜面积与观察者得出的面积之间具有极好的一致性(相关系数为0.94 - 0.99)。尽管图像采集方案、磁共振系统和场强存在差异,但该算法对来自所有三个中心的数据都同样有效。这些数据表明,基于图形搜索原理的计算机辅助边缘检测方法得出的心内膜和心外膜面积与独立观察者得出的面积具有良好的相关性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验