Sarin V B
Centre for Atmospheric and Fluids Sciences, Indian Institute of Technology, New Delhi.
Int J Biomed Comput. 1993 Mar;32(2):135-49. doi: 10.1016/0020-7101(93)90052-8.
Curvature forms an important feature of thoracic aorta and this paper deals with the flow of an idealized elastico-viscous liquid in a curved pipe of circular cross-section and slowly varying curvature, under a pressure gradient. The flow is assumed to be steady and at low Reynolds numbers. By using the series expansion method of Dean (Phil Mag 4 (1927) 208-223; Phil Mag 5 (1928) 673-693) in powers of a parameter L, which can be considered as the square of ratio of the centrifugal force induced by the circular motion of the fluid to the viscous force, it is shown that in a tube of increasing curvature, there will be delay in setting up of the secondary motion. The wall shear stress, an important parameter in physiological flows, is calculated. The flow of Newtonian fluid in a tube of circular cross section is discussed, as a particular case.
曲率是胸主动脉的一个重要特征,本文研究了在压力梯度作用下,理想弹粘性液体在具有圆形横截面且曲率缓慢变化的弯曲管道中的流动。假设流动是稳定的且雷诺数较低。通过使用迪恩(《哲学杂志》4(1927)208 - 223;《哲学杂志》5(1928)673 - 693)以参数L的幂次展开的级数展开法,其中L可视为由流体圆周运动引起的离心力与粘性力之比的平方,结果表明在曲率增加的管道中,二次运动的建立会有延迟。计算了生理流动中的一个重要参数——壁面剪应力。作为一个特殊情况,讨论了牛顿流体在圆形横截面管道中的流动。