Testa U, Pelosi E, Gabbianelli M, Fossati C, Campisi S, Isacchi G, Peschle C
Department of Hematology and Oncology, Istituto Superiore di Sanità, Rome, Italy.
Blood. 1993 Mar 15;81(6):1442-56.
Highly purified progenitors (including erythroid [BFU-E], granulo-monocytic [CFU-GM], multipotent [CFU-GEMM] progenitors, as well as multipotent progenitors with self-renewal capacity [CFU-B]) express high-affinity growth factor receptors (GFRs), with prevalent interleukin-3 receptors (IL-3Rs) (2,700/cell), a > or = 10-fold lower number of IL-6Rs (145/cell) and granulocyte-macrophage colony-stimulating factor receptors (GM-CSFRs) (300/cell), and a barely detectable level of erythropoietin (Ep) receptors (75/cell). Hematopoietic growth factor (HGF) dosages inducing peak clonogenetic effects are associated with partial/subtotal occupancy of the homologous HGF receptor (HGFR). Cross-reactivity between GFRs and heterologous GFs (including IL-6, IL-3, GM-CSF, Ep, and the kit ligand [KL]) was explored by competition experiments on purified progenitors with radiolabeled and excess cold HGFs at +4 degrees C. No cross-reaction was observed between IL-6R, IL-3R, EpR, and the heterologous GFs, whereas the GM-CSFR showed cross-reactivity with IL-3 and, to a lesser extent, KL. Modulation of GFRs was examined after 18 or 40 hours of incubation with GF(s) at 37 degrees C, followed by ligand-binding assay at 20 degrees C. IL-6, IL-3, GM-CSF, and Ep induce a marked down-modulation of their own receptors. Interestingly, each GF induces the transactivation of the R(s) for the "distal" GF(s): (1) IL-6 induces transactivation of IL-3R, but not of GM-CSFR/EpR; (2) IL-3 causes a rapid upmodulation of GM-CSFR/EpR ("pure" progenitors treated with IL-3 show upmodulation of GM-CSFR alpha-chain mRNA by reverse transcriptase-polymerase chain reaction); whereas (3) GM-CSF induces the transactivation of the EpR. This chain upmodulation of HGFRs may underlie the synergistic interactions between the HGFs in clonogenetic culture. It is emphasized that KL does not induce upmodulation of the other GFRs. Finally, Ep, GM-CSF, and IL-3 do not modulate the expression of the "proximal" HGFRs (ie, GM-CSFR/IL-3R/IL-6R, IL-3R/IL-6R, and IL-6R, respectively). These results allow insight into the cellular basis of hematopoiesis, ie, the complex and coordinate interactions between HGFs and their receptors. They are compatible with a model of cascade transactivation via upmodulation of GFRs in the initial key steps of hematopoietic differentiation, whereby the action of each GF enhances the effect of the distal GF(s) by a multistep chain-potentiation mechanism.
高度纯化的祖细胞(包括红系祖细胞[BFU-E]、粒-单核系祖细胞[CFU-GM]、多能祖细胞[CFU-GEMM]以及具有自我更新能力的多能祖细胞[CFU-B])表达高亲和力生长因子受体(GFRs),其中普遍存在白细胞介素-3受体(IL-3Rs)(2700个/细胞),IL-6受体(145个/细胞)和粒细胞-巨噬细胞集落刺激因子受体(GM-CSFRs)(300个/细胞)的数量则低10倍或更多,而促红细胞生成素(Ep)受体的水平几乎检测不到(75个/细胞)。诱导峰值克隆形成效应的造血生长因子(HGF)剂量与同源HGF受体(HGFR)的部分/全部占据相关。通过在4℃下用放射性标记且过量的冷HGF对纯化的祖细胞进行竞争实验,研究了GFRs与异源生长因子(包括IL-6、IL-3、GM-CSF、Ep和干细胞生长因子[KL])之间的交叉反应性。未观察到IL-6R、IL-3R、EpR与异源生长因子之间的交叉反应,而GM-CSFR显示与IL-3以及程度较轻地与KL存在交叉反应。在37℃下与生长因子孵育18或40小时后,检测GFRs的调节情况,随后在20℃下进行配体结合测定。IL-6、IL-3、GM-CSF和Ep可诱导其自身受体的显著下调。有趣的是,每种生长因子都会诱导“下游”生长因子受体的反式激活:(1)IL-6诱导IL-3R的反式激活,但不诱导GM-CSFR/EpR的反式激活;(2)IL-3导致GM-CSFR/EpR的快速上调(用IL-3处理的“纯”祖细胞通过逆转录聚合酶链反应显示GM-CSFRα链mRNA上调);而(3)GM-CSF诱导EpR的反式激活。HGFRs的这种连锁上调可能是克隆形成培养中HGFs之间协同相互作用的基础。需要强调的是,KL不会诱导其他GFRs的上调。最后,Ep、GM-CSF和IL-3不会调节“上游”HGFRs的表达(即分别为GM-CSFR/IL-3R/IL-6R、IL-3R/IL-6R和IL-6R)。这些结果有助于深入了解造血的细胞基础,即HGFs及其受体之间复杂而协调的相互作用。它们与造血分化初始关键步骤中通过GFRs上调实现级联反式激活的模型相符,据此每种生长因子的作用通过多步骤连锁增强机制增强下游生长因子的效应。