Suppr超能文献

Improving effect of acetylcholine receptor agonists on a deficit of 2-deoxyglucose uptake in cerebral cortical and hippocampal slices in aged and AF64A-treated rats.

作者信息

Shibata S, Kodama K, Koga Y, Ueki S, Watanabe S

机构信息

Department of Pharmacology, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.

出版信息

Brain Res. 1993 Feb 19;603(2):248-54. doi: 10.1016/0006-8993(93)91244-m.

Abstract

The aim of the present study was to determine whether the facilitation of 2-deoxyglucose (2-DG) uptake in the cerebral and hippocampal slices by nicotinic and muscarinic receptor agonists is compromised in the aged rat brain. For this, the effects of the nicotinic receptor agonist nicotine, the muscarinic receptor agonists oxotremorine and McN-A-343, and the ACh esterase inhibitors physostigmine and NK247 on 2-DG uptake in the brain slices of young (2-month-old) and aged (24-26-month-old) rats were tested. The decrements of 2-DG uptake in the cortical slices of aged rats were significantly attenuated by treatment with oxotremorine, nicotine and amiridine. In contrast, the metabolic responsivity of hippocampal slices to these drugs was reduced. To assess whether age-related changes in 2-DG uptake may be due to deficits in cholinergic function, we tested these drugs on the decrements of 2-DG uptake in ethylcholine aziridinium (a neurotoxic analog of choline) injected rats. The reductions of 2-DG uptake by injection of ethylcholine aziridinium was attenuated by oxotremorine but not by physostigmine. The present results reveal that metabolic decrements in the cerebral cortex from aged or ethylcholine aziridinium-injected rats were attenuated by muscarinic and nicotinic receptor agonists, suggesting that the muscarinic and nicotinic receptor mechanism in the cerebral cortex may be involved in cholinergic drug-induced functional recovery in aged rats.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验