Sanchez-Lopez R, Alexander C M, Behrendtsen O, Breathnach R, Werb Z
Laboratoire de Génétique Moléculaire des Eucaryotes du Centre de la Recherche Scientifique, Unité 184 Institut National de la Santé et de la Recherche Médicale, Strasbourg, France.
J Biol Chem. 1993 Apr 5;268(10):7238-47.
The relationship of enzyme structure to substrate specificity for the matrix metalloproteinases interstitial collagenase and stromelysin-2 has been investigated by analysis of the cleavage specificity of recombinant human collagenase-stromelysin-2 hybrid proteins and C terminally truncated collagenase and stromelysin-2. Two series of chimeric proteins were devised by progressive substitution of exon-encoded domains. The recombinant proteins were expressed in COS-7 cells as protein A-fusion proteins and purified on an IgG affinity matrix. Treatment with 4-amino-phenylmercuric acetate released active metalloproteinase of the sizes predicted for the chimeric proteins. Active forms of both the chimeric protein series and the short form enzymes expressed both casein- and gelatin-degrading activities. Like stromelysin, the catalytic activity of stromelysin-2 was contained in the N-terminal domain (encoded by exons 1-5) and was apparently independent of the C-terminal domain (encoded by exons 6-10). Only full-length collagenase displayed a triple helicase (collagenolytic) activity; no combination of N- or C-terminal collagenase domains fused with stromelysin-2 domains had such activity. This suggests that the triple helicase activity is a composite of elements derived from both halves of the collagenase molecule. C terminally truncated collagenase (exons 1-5) and a hybrid of collagenase exons 1-5 and stromelysin-2 exons 6-10 cleaved denatured type I collagen (gelatin) to generate diagnostic peptides in gelatin fingerprint assays. When exon 5 (the exon encoding the zinc-binding domain) was derived from stromelysin-2, the enzyme specificity in the fingerprint assay changed to that of native stromelysin-2. In contrast, when exon 5 was derived from collagenase, the specificity reflected that of the parent enzyme. Our data also suggest that mismatching of exons 2 and 5 destabilizes the enzyme, presumably by altering the geometry of the propeptide-zinc-binding site interaction. We conclude that the loss of triple helicase collagenolytic activity is not accompanied by a shift to the broad specificity characteristic of stromelysin. Rather, the zinc-binding domain confers a distinct cleavage specificity on each metalloproteinase.
通过分析重组人胶原酶 - 基质溶解素 -2 杂合蛋白以及 C 末端截短的胶原酶和基质溶解素 -2 的切割特异性,研究了基质金属蛋白酶间质胶原酶和基质溶解素 -2 的酶结构与底物特异性之间的关系。通过逐步替换外显子编码结构域设计了两个系列的嵌合蛋白。重组蛋白在 COS -7 细胞中作为蛋白 A 融合蛋白表达,并在 IgG 亲和基质上纯化。用乙酸 4 - 氨基苯汞处理可释放出预测大小的嵌合蛋白活性金属蛋白酶。嵌合蛋白系列和短形式酶的活性形式均表现出酪蛋白和明胶降解活性。与基质溶解素一样,基质溶解素 -2 的催化活性存在于 N 末端结构域(由外显子 1 - 5 编码),显然与 C 末端结构域(由外显子 6 - 10 编码)无关。只有全长胶原酶表现出三螺旋酶(胶原分解)活性;与基质溶解素 -2 结构域融合的 N 末端或 C 末端胶原酶结构域的任何组合都没有这种活性。这表明三螺旋酶活性是源自胶原酶分子两半部分的元件的组合。C 末端截短的胶原酶(外显子 1 - 5)以及胶原酶外显子 1 - 5 和基质溶解素 -2 外显子 6 - 10 的杂合体在明胶指纹分析中切割变性的 I 型胶原(明胶)以产生诊断性肽段。当外显子 5(编码锌结合结构域的外显子)源自基质溶解素 -2 时,指纹分析中的酶特异性变为天然基质溶解素 -2 的特异性。相反,当外显子 5 源自胶原酶时,特异性反映了亲本酶的特异性。我们的数据还表明,外显子 2 和 5 的不匹配会使酶不稳定,大概是通过改变前肽 - 锌结合位点相互作用的几何结构。我们得出结论,三螺旋酶胶原分解活性的丧失并不伴随着向基质溶解素广泛特异性特征的转变。相反,锌结合结构域赋予每种基质金属蛋白酶独特的切割特异性。