Baisch J M, Capra J D
Center for Diabetes Research, University of Texas Southwestern Medical Center, Dallas 75235-9048.
Scand J Immunol. 1993 Apr;37(4):499-503. doi: 10.1111/j.1365-3083.1993.tb03325.x.
It is well known that certain alleles from different loci within the Human Leucocyte Antigen (HLA) complex are in linkage disequilibrium. This linkage phenomenon is relatively well characterized for haplotypes that include specific class I and class II alleles such as HLA-B8 and HLA-DR3. However, the HLA-DP genes are located at the centromeric end of the HLA complex and are less well characterized with regard to linkage disequilibrium. The availability of a large population of healthy subjects and sequence-specific oligonucleotide (SSO) typing enabled us to assess the degree of linkage between HLA-DPB1 and HLA-DQB1 genes. Using the polymerase chain reaction and a series of oligonucleotide probes which define seven DQ beta alleles and twenty DP beta alleles, we studied 180 unrelated, normal Caucasian individuals and found only weak or negative associations between HLA-DPB1 and HLA-DQB1. These data demonstrate that the association between HLA-DQ and DP is weak and also imply that DP extended haplotypes related to particular diseases may not reflect normal associations. Implications of these results might impact on the concept of linkage disequilibrium in general as well as the evolution of the HLA complex. In addition, extensions of this work may have clinical ramifications with regard to bone marrow transplantation and founder effects in certain diseases.