Suppr超能文献

Phenylhydrazones as new good substrates for the dioxygenase and peroxidase reactions of prostaglandin synthase: formation of iron(III)-sigma-phenyl complexes.

作者信息

Mahy J P, Gaspard S, Mansuy D

机构信息

Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques (URA 400 CNRS), Université René Descartes, France.

出版信息

Biochemistry. 1993 Apr 20;32(15):4014-21. doi: 10.1021/bi00066a023.

Abstract

Phenylhydrazones of various aromatic and aliphatic aldehydes or ketones act as good substrates of the dioxygenase reaction of prostaglandin synthase (PGHS). Corresponding alpha-azo hydroperoxides are formed as intermediates with maximum initial rates of O2 consumption between 8 and 230 mol (mol of PGHS)-1 s-1 for benzophenone and hexanal phenylhydrazone, respectively. The Km values for these reactions vary from 100 to 300 microM. These alpha-azo hydroperoxides are then converted to the corresponding alpha-azo alcohols by the peroxidase reaction of PGHS. During such oxidations of phenylhydrazones by PGHS, a new complex of this hemeprotein characterized by peaks at 438 and 556 nm is formed. This complex was obtained both by direct reaction of PGHS Fe(III) with phenyldiazene and by reaction of PGHS Fe(III) with phenylhydrazine in the presence of O2. By analogy to results previously reported for hemoglobin, myoglobin, catalase, and cytochrome P450, this species should be a sigma-phenyl PGHS FeIII-Ph complex. The PGHS FeIII-Ph complex should derive from an oxidation of the intermediate alpha-azo alcohol by PGHS Fe(III), cleavage of the resulting alkoxy radical with formation of a ketone (or aldehyde) and Ph*, and combination of PGHS Fe(II) with Ph*. Such an oxidation of alpha-azo alcohols by lipoxygenase-FeIII with formation of Ph* was reported previously. The formation of Ph* and of PGHS FeIII-Ph is likely the cause of the inhibitory effects previously reported for arylhydrazones toward PGHS.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验