Imberti R, Nieminen A L, Herman B, Lemasters J J
Department of Cell Biology & Anatomy, School of Medicine, University of North Carolina, Chapel Hill.
J Pharmacol Exp Ther. 1993 Apr;265(1):392-400.
In isolated mitochondria, t-butylhydroperoxide (t-BuOOH) and other pro-oxidants cause a permeability transition characterized by increased permeability to small ions, swelling and loss of membrane potential. Cyclosporin A and trifluoperazine inhibit this permeability transition. Here, we investigated the role of the mitochondrial permeability transition in lethal cellular injury from t-BuOOH. Hepatocytes from fasted rats were isolated by collagenase perfusion, and cell viability was assessed by propidium iodide fluorescence. t-BuOOH caused dose- and time-dependent cell killing. Fructose, a substrate for glycolytic ATP formation, protected at lower (< or = 100 microM), but not at higher concentrations of t-BuOOH. In fructose-treated cells, oligomycin (10 micrograms/ml) delayed cell killing after 100 to 300 microM t-BuOOH, whereas cyclosporin A (0.5 microM) plus trifluoperazine (5 microM) even more potently reduced lethal injury. In hepatocyte suspensions, 100 microM t-BuOOH caused mitochondrial depolarization as determined by release of rhodamine 123. Cyclosporin A plus trifluoperazine in the presence of fructose substantially reduced release of rhodamine 123. Similarly, in single cultured hepatocytes viewed by laser scanning confocal microscopy, t-BuOOH caused leakage of rhodamine 123 from mitochondria, an event which preceded cell death and which was delayed by fructose in combination with cyclosporin A plus trifluoperazine. At 1 mM, t-BuOOH inhibited glycolysis, and fructose in combination with either oligomycin or cyclosporin A plus trifluoperazine had only a short-lived protective effect. In conclusion, t-BuOOH toxicity was progressive with increasing dosages. At low t-BuOOH (< or = 50 microM), mitochondrial ATP synthetic capacity was inhibited, but not uncoupled.(ABSTRACT TRUNCATED AT 250 WORDS)
在分离的线粒体中,叔丁基过氧化氢(t-BuOOH)和其他促氧化剂会引发通透性转变,其特征为对小离子的通透性增加、肿胀以及膜电位丧失。环孢素A和三氟拉嗪可抑制这种通透性转变。在此,我们研究了线粒体通透性转变在叔丁基过氧化氢所致致死性细胞损伤中的作用。通过胶原酶灌注分离禁食大鼠的肝细胞,并用碘化丙啶荧光评估细胞活力。叔丁基过氧化氢导致剂量和时间依赖性的细胞杀伤。果糖作为糖酵解生成ATP的底物,在较低浓度(≤100微摩尔)时具有保护作用,但在较高浓度的叔丁基过氧化氢时则不然。在果糖处理的细胞中,寡霉素(10微克/毫升)在100至300微摩尔叔丁基过氧化氢作用后延迟了细胞杀伤,而环孢素A(0.5微摩尔)加三氟拉嗪(5微摩尔)能更有效地减轻致死性损伤。在肝细胞悬液中,100微摩尔叔丁基过氧化氢导致若丹明123释放,表明线粒体去极化。在果糖存在的情况下,环孢素A加三氟拉嗪显著减少了若丹明123的释放。同样,在通过激光扫描共聚焦显微镜观察的单个培养肝细胞中,叔丁基过氧化氢导致若丹明123从线粒体泄漏,这一事件先于细胞死亡,且果糖与环孢素A加三氟拉嗪联合使用可延迟该事件发生。在1毫摩尔时,叔丁基过氧化氢抑制糖酵解,果糖与寡霉素或环孢素A加三氟拉嗪联合使用仅具有短暂的保护作用。总之,叔丁基过氧化氢的毒性随剂量增加而进展。在低剂量叔丁基过氧化氢(≤50微摩尔)时,线粒体ATP合成能力受到抑制,但未发生解偶联。(摘要截短于250字)