Suppr超能文献

pH-dependent nonlysosomal proteolysis contributes to lethal anoxic injury of rat hepatocytes.

作者信息

Bronk S F, Gores G J

机构信息

Department of Internal Medicine, Mayo Medical School, Rochester, Minnesota 55905.

出版信息

Am J Physiol. 1993 Apr;264(4 Pt 1):G744-51. doi: 10.1152/ajpgi.1993.264.4.G744.

Abstract

Our aim was to test the hypothesis that pH-dependent nonlysosomal proteolysis is a key mechanism culminating in lethal anoxic injury of rat hepatocytes. Although lysosomal proteolysis was suppressed during anoxia, total nonlysosomal proteolysis was increased twofold compared with aerobic controls. Extracellular acidosis inhibited total nonlysosomal proteolysis and improved cell survival during anoxia. Indeed, we found a direct highly significant linear relationship between cell death and total nonlysosomal proteolysis as modulated by changes in the extracellular pH (r = 0.99, P < 0.01). Glycolytic generation of ATP from fructose during anoxia suppressed total nonlysosomal proteolysis and improved cell survival. An increase in a pH-dependent calpain-like protease activity was also identified during anoxia, but calpain-like protease activity only accounted for 16% of total nonlysosomal protease activity. In addition, the calpain protease inhibitor Cbz-Leu-Leu-Tyr-CHN2 only partially protected against cell killing despite complete inhibition of calpain-like protease activity. These data suggest that pH-dependent total nonlysosomal proteolysis contributes to lethal cell injury during anoxia. However, calpain protease activity only partially contributes to total nonlysosomal protease activity and cell death.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验