Suppr超能文献

确定性和随机性神经网络中模拟的方向选择性简单细胞的出现。

Emergence of orientation selective simple cells simulated in deterministic and stochastic neural networks.

作者信息

Stetter M, Lang E W, Müller A

机构信息

Institut für Biophysik und physikalische Biochemie, Universität Regensburg, Germany.

出版信息

Biol Cybern. 1993;68(5):465-76. doi: 10.1007/BF00198779.

Abstract

The processing of visual data in area 17 of the mammalian cortex is mainly performed by cells with receptive fields which are tuned to different orientations of input stimuli. The mechanisms underlying the emergence of receptive field properties of orientation selective cells are not well understood up to now. Recently, some models for the prenatal development of the receptive fields of orientation selective simple cells have been proposed, which emerge in neural networks trained by Hebb type unsupervised learning rules. These models, however, use different network architectures and are restricted to the case of identical input neurons. In this work, a biologically motivated neural network model with a general architecture is presented. It is trained with a Hebb type updating rule and with uncorrelated input. The input neurons are identified with retinal ganglion cells and exhibit mature Mexican hat type receptive fields. If the receptive fields of the input neurons have identical properties (deterministic model), a set of parameter domains is found, which characterize different kinds of receptive field maturation behaviour of the network. Results obtained by other authors with similar models are contained in this description as special cases. In addition, the more general and rarely investigated stochastic model, where random variations of the parameters describing the receptive fields of the input neurons occur, is investigated. A high sensitivity of the network against these random variations is obtained. In case of large variations of receptive field parameters of the ganglion cells, a qualitatively new kind of maturation behaviour appears. A significant part of the synaptic connections from ganglion cells to the cortical cell is removed and small simple cell receptive fields with only few lobes emerge. The stochastic model is found to provide a better description of the size, scatter and structure of receptive fields present in biological systems, than the deterministic model.

摘要

哺乳动物皮层17区视觉数据的处理主要由具有感受野的细胞完成,这些感受野被调整以适应输入刺激的不同方向。到目前为止,方向选择性细胞感受野特性出现的潜在机制尚未得到很好的理解。最近,有人提出了一些关于方向选择性简单细胞感受野产前发育的模型,这些模型出现在由赫布型无监督学习规则训练的神经网络中。然而,这些模型使用不同的网络架构,并且仅限于相同输入神经元的情况。在这项工作中,提出了一种具有通用架构的受生物学启发的神经网络模型。它使用赫布型更新规则和不相关输入进行训练。输入神经元被识别为视网膜神经节细胞,并表现出成熟的墨西哥帽型感受野。如果输入神经元的感受野具有相同的特性(确定性模型),则会找到一组参数域,这些参数域表征了网络不同类型的感受野成熟行为。其他作者用类似模型获得的结果包含在本描述中作为特殊情况。此外,还研究了更一般且较少研究的随机模型,其中描述输入神经元感受野的参数会发生随机变化。获得了网络对这些随机变化的高敏感性。在神经节细胞感受野参数有较大变化的情况下,会出现一种定性的新型成熟行为。从神经节细胞到皮层细胞的突触连接的很大一部分被去除,出现了只有少数叶的小简单细胞感受野。发现随机模型比确定性模型能更好地描述生物系统中存在的感受野的大小、分散和结构。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验