Suppr超能文献

Identification of functional PGH2/TxA2 receptors on human endothelial cells.

作者信息

Kent K C, Collins L J, Schwerin F T, Raychowdhury M K, Ware J A

机构信息

Department of Surgery (Vascular Division), Beth Israel Hospital, Boston, MA 02215.

出版信息

Circ Res. 1993 May;72(5):958-65. doi: 10.1161/01.res.72.5.958.

Abstract

Although functional receptors for thromboxane A2 and prostaglandin H2 (TxA2/PGH2) have been identified in platelets and vascular smooth muscle cells, receptor-mediated events in human endothelial cells stimulated by these endoperoxides have not been shown. Using cultured endothelial cells harvested from human umbilical or saphenous veins, we measured the effect of the TxA2 mimetic U46619 on mobilization of cytoplasmic calcium ([Ca2+]i), as well as release of prostacyclin and expression of the proto-oncogene c-fos, intracellular events that have been linked to [Ca2+]i rise in stimulated endothelial cells. Addition of U46619 to confluent fura 2-loaded endothelial cells caused a concentration-dependent rise in intracellular [Ca2+]i, with agonist concentrations of 300 nM producing a maximal [Ca2+]i rise. This [Ca2+]i rise was a uniform response observed in all individual endothelial cells throughout the monolayer, as shown by microspectrofluorimetric visualization. Similar effects were seen with a structurally dissimilar endoperoxide analogue, I-BOP, and with the naturally occurring endoperoxide PGH2. The initial [Ca2+]i rise was not reduced when extracellular [Ca2+]i was chelated with EGTA, but a later "plateau" phase was eliminated. An antagonist of the receptor for TxA2/PGH2 (SQ29548) strongly inhibited [Ca2+]i mobilization. Stimulation of endothelial cells with U46619 also transiently increased expression of the proto-oncogene c-fos, as determined by RNA hybridization, and induced a fivefold increase in prostacyclin release. Thus, endoperoxides can stimulate human venous endothelial cells by means of TxA2/PGH2 receptors, whose occupancy can activate intracellular events associated with functional changes.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验