Hervé D, Lévi-Strauss M, Marey-Semper I, Verney C, Tassin J P, Glowinski J, Girault J A
Chaire de Neuropharmacologie, INSERM U 114, Collège de France, Paris.
J Neurosci. 1993 May;13(5):2237-48. doi: 10.1523/JNEUROSCI.13-05-02237.1993.
Using specific antibodies and cDNA probes, we have investigated, in rat basal ganglia, the distribution and the regulation of the expression of the alpha subunits of Gs and G(olf), two GTP-binding proteins (G-proteins) that stimulate adenylyl cyclase. We confirmed that G(olf) alpha is highly expressed in caudate-putamen, nucleus accumbens, and olfactory tubercle, whereas Gs alpha is less abundant in these areas than in the other brain regions. Intrastriatal injections of quinolinic acid decreased dramatically the levels of G(olf) alpha protein in the striatum and the substantia nigra, and those of G(olf) alpha mRNA in the striatum. Retrograde lesions of striatonigral neurons with volkensin reduced markedly the levels of D1 dopamine (DA) binding sites, as well as those of G(olf) alpha protein and mRNA in the striatum, without altering D2 binding sites. In contrast, both types of lesions increased the levels of Gs alpha protein in the striatum and substantia nigra. Immunocytochemistry showed the presence of G(olf) alpha protein in striatal medium-sized neurons and in several other neuronal populations. These results demonstrate that striatonigral neurons contain high levels of G(olf) alpha and little, if any, Gs alpha, suggesting that the coupling of D1 receptor to adenylyl cyclase is provided by G(olf) alpha. The levels of G(olf) alpha were five- to sixfold higher in the striatum than in the substantia nigra, indicating a preferential localization of G(olf) alpha in the somatodendritic region of striatonigral neurons and providing a basis for the low efficiency of D1 receptor coupling in the substantia nigra. Six weeks after 6-hydroxydopamine lesions of DA neurons, an increase in G(olf) alpha (+53%) and Gs alpha (+64%) proteins was observed in the striatum. This increase in G(olf) alpha levels may account for the DA-activated adenylyl cyclase supersensitivity, without change in D1 receptors density, that follows destruction of DA neurons. Fine regulation of the levels of G(olf) alpha in physiological or pathological situations may be a critical parameter for the efficiency of DA neurotransmission.
利用特异性抗体和cDNA探针,我们在大鼠基底神经节中研究了Gs和G(olf)的α亚基的分布及表达调控,这两种鸟苷三磷酸结合蛋白(G蛋白)可刺激腺苷酸环化酶。我们证实,G(olf)α在尾状核 - 壳核、伏隔核和嗅结节中高表达,而Gsα在这些区域的丰度低于其他脑区。纹状体内注射喹啉酸可显著降低纹状体和黑质中G(olf)α蛋白的水平,以及纹状体中G(olf)α mRNA的水平。用 Volkensin对纹状体黑质神经元进行逆行损伤可显著降低纹状体中D1多巴胺(DA)结合位点的水平,以及G(olf)α蛋白和mRNA的水平,而不改变D2结合位点。相反,这两种损伤类型均增加了纹状体和黑质中Gsα蛋白的水平。免疫细胞化学显示,G(olf)α蛋白存在于纹状体中等大小神经元及其他几种神经元群体中。这些结果表明,纹状体黑质神经元含有高水平的G(olf)α和少量(如果有的话)Gsα,提示D1受体与腺苷酸环化酶的偶联是由G(olf)α提供的。纹状体中G(olf)α的水平比黑质中高五到六倍,表明G(olf)α优先定位于纹状体黑质神经元的胞体 - 树突区域,并为黑质中D1受体偶联效率低下提供了基础。多巴胺能神经元经6 - 羟基多巴胺损伤六周后,纹状体中G(olf)α(增加53%)和Gsα(增加64%)蛋白水平升高。G(olf)α水平的这种升高可能解释了多巴胺能神经元破坏后出现的多巴胺激活的腺苷酸环化酶超敏反应,而D1受体密度并无变化。在生理或病理情况下对G(olf)α水平进行精细调节可能是多巴胺神经传递效率的关键参数。