Rini J M, Hardman K D, Einspahr H, Suddath F L, Carver J P
Department of Molecular and Medical Genetics, University of Toronto, Ontario, Canada.
J Biol Chem. 1993 May 15;268(14):10126-32. doi: 10.2210/pdb1rin/pdb.
The x-ray crystal structure of pea lectin, in complex with a methyl glycoside of the N-linked-type oligosaccharide trimannosyl core, methyl 3,6-di-O-(alpha-D-mannopyranosyl)-alpha-D-mannopyranoside, has been solved by molecular replacement and refined at 2.6-A resolution. The R factor is 0.183 for all data in the 8.0 to 2.6 A resolution range with an average atomic temperature factor of 26.1 A2. Strong electron density for a single mannose residue is found in the monosaccharide-binding site suggesting that the trisaccharide binds primarily through one of the terminal alpha-linked mannose residues. The complex is stabilized by hydrogen bonds involving the protein residues Asp-81, Gly-99, Asn-125, Ala-217, and Glu-218, and the carbohydrate oxygen atoms O3, O4, O5, and O6. In addition, the carbohydrate makes van der Waals contacts with the protein, involving Phe-123 in particular. These interactions are very similar to those found in the monosaccharide complexes with concanavalin A and isolectin 1 of Lathyrus ochrus, confirming the structural relatedness of this family of proteins. Comparison of the pea lectin complex with the unliganded pea lectin and concanavalin A structures indicates differences in the conformation and water structure of the unliganded binding sites of these two proteins. Furthermore, a correlation between the position of the carbohydrate oxygen atoms in the complex and the bound water molecules in the unliganded binding sites is found. Binding of the trimannose core through a single terminal monosaccharide residue strongly argues that an additional fucose-binding site is responsible for the high affinity pea lectin-oligosaccharide interactions.
豌豆凝集素与N-连接型寡糖三甘露糖核心的甲基糖苷(甲基3,6-二-O-(α-D-甘露吡喃糖基)-α-D-甘露吡喃糖苷)形成的复合物的X射线晶体结构已通过分子置换法解析,并在2.6埃分辨率下进行了精修。在8.0至2.6埃分辨率范围内,所有数据的R因子为0.183,平均原子温度因子为26.1埃²。在单糖结合位点发现了单个甘露糖残基的强电子密度,这表明三糖主要通过一个末端α-连接的甘露糖残基结合。该复合物通过涉及蛋白质残基天冬氨酸-81、甘氨酸-99、天冬酰胺-125、丙氨酸-217和谷氨酸-218以及碳水化合物氧原子O3、O4、O5和O6的氢键得以稳定。此外,碳水化合物与蛋白质形成范德华接触,尤其涉及苯丙氨酸-123。这些相互作用与在与伴刀豆球蛋白A和山黧豆异凝集素1的单糖复合物中发现的相互作用非常相似,证实了该蛋白质家族的结构相关性。豌豆凝集素复合物与未结合配体的豌豆凝集素和伴刀豆球蛋白A结构的比较表明,这两种蛋白质未结合配体的结合位点在构象和水结构上存在差异。此外,发现了复合物中碳水化合物氧原子的位置与未结合配体的结合位点中结合水分子之间的相关性。通过单个末端单糖残基结合三甘露糖核心有力地表明,一个额外的岩藻糖结合位点负责豌豆凝集素与寡糖的高亲和力相互作用。