Curnow A W, Kung F L, Koch K A, Garcia G A
Interdepartmental Program in Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor 48109-1065.
Biochemistry. 1993 May 18;32(19):5239-46. doi: 10.1021/bi00070a036.
tRNA-guanine transglycosylase (TGT) is the enzyme responsible for the post-transcriptional modification of specific tRNAs (those for Asn, Asp, His, and Tyr) with the hypermodified base, queuine. In Escherichia coli this enzyme catalyzes the exchange of guanine-34 in the anticodon with preQ1, which is subsequently further modified to queuine. There is evidence that such hypermodified tRNA molecules may play a role in the control of cell proliferation and differentiation. In order to perform detailed, in vitro mechanistic studies and to probe the tRNA-enzyme interaction, we have generated unmodified E. coli tRNA(Tyr) and truncated analogues using an in vitro RNA synthesis system suggested by Milligan and Uhlenbeck [Milligan, J. F., & Uhlenbeck, O. C. (1989) Methods Enzymol. 180, 51-62]. From this system we have generated three tRNA analogues totally devoid of any post-transcriptional modifications. In order to compare the unmodified tRNA with the true physiological substrate for TGT, that is, tRNA that contains all modified bases except queuine, we have isolated E. coli tRNA(Tyr) from an overexpressing clone in a TGT-deficient strain of E. coli. We report here that unmodified, full-length tRNA(Tyr) serves as a substrate for TGT with kinetic parameters that are, within experimental error, the same as those for in vivo isolated tRNA(Tyr). This indicates that other post-transcriptional modifications have negligible effects upon TGT recognition of tRNA. A 17-base oligoribonucleotide, corresponding to the anticodon loop and stem, is also a substrate for TGT with only a 20-fold loss in Vmax/KM, versus the full-length tRNA.(ABSTRACT TRUNCATED AT 250 WORDS)
转运RNA-鸟嘌呤转糖基酶(TGT)是一种负责对特定转运RNA(天冬酰胺、天冬氨酸、组氨酸和酪氨酸的转运RNA)进行转录后修饰的酶,它会将超修饰碱基queuine修饰到这些转运RNA上。在大肠杆菌中,这种酶催化反密码子中鸟嘌呤-34与preQ1进行交换,随后preQ1会进一步被修饰为queuine。有证据表明,这种超修饰的转运RNA分子可能在细胞增殖和分化的控制中发挥作用。为了进行详细的体外机制研究并探究转运RNA与酶的相互作用,我们利用米利根和厄伦贝克提出的体外RNA合成系统[米利根,J.F.,&厄伦贝克,O.C.(1989年)《酶学方法》180,51 - 62]生成了未修饰的大肠杆菌转运RNA(Tyr)及其截短类似物。从这个系统中,我们生成了三种完全没有任何转录后修饰的转运RNA类似物。为了将未修饰的转运RNA与TGT的真正生理底物(即除queuine外含有所有修饰碱基的转运RNA)进行比较,我们从大肠杆菌TGT缺陷菌株中的一个过表达克隆中分离出了大肠杆菌转运RNA(Tyr)。我们在此报告,未修饰的全长转运RNA(Tyr)可作为TGT的底物,其动力学参数在实验误差范围内与体内分离的转运RNA(Tyr)相同。这表明其他转录后修饰对TGT识别转运RNA的影响可忽略不计。一个与反密码子环和茎相对应的17个碱基的寡核糖核苷酸也是TGT的底物,与全长转运RNA相比,其Vmax/KM仅损失20倍。(摘要截短至250字)