Suppr超能文献

用于事件相关脑电位长潜伏期成分的最佳数字滤波器。

Optimal digital filters for long-latency components of the event-related brain potential.

作者信息

Farwell L A, Martinerie J M, Bashore T R, Rapp P E, Goddard P H

机构信息

Human Brain Research Laboratory, Potomac, MD 20854.

出版信息

Psychophysiology. 1993 May;30(3):306-15. doi: 10.1111/j.1469-8986.1993.tb03357.x.

Abstract

A fundamentally important problem for cognitive psychophysiologists is selection of the appropriate off-line digital filter to extract signal from noise in the event-related brain potential (ERP) recorded at the scalp. Investigators in the field typically use a type of finite impulse response (FIR) filter known as moving average or boxcar filter to achieve this end. However, this type of filter can produce significant amplitude diminution and distortion of the shape of the ERP waveform. Thus, there is a need to identify more appropriate filters. In this paper, we compare the performance of another type of FIR filter that, unlike the boxcar filter, is designed with an optimizing algorithm that reduces signal distortion and maximizes signal extraction (referred to here as an optimal FIR filter). We applied several different filters of both types to ERP data containing the P300 component. This comparison revealed that boxcar filters reduced the contribution of high-frequency noise to the ERP but in so doing produced a substantial attenuation of P300 amplitude and, in some cases, substantial distortions of the shape of the waveform, resulting in significant errors in latency estimation. In contrast, the optimal FIR filters preserved P300 amplitude, morphology, and latency and also eliminated high-frequency noise more effectively than did the boxcar filters. The implications of these results for data acquisition and analysis are discussed.

摘要

对于认知心理生理学家来说,一个至关重要的问题是如何选择合适的离线数字滤波器,以便从头皮记录的事件相关脑电位(ERP)中提取信号并去除噪声。该领域的研究人员通常使用一种称为移动平均或矩形窗滤波器的有限脉冲响应(FIR)滤波器来实现这一目的。然而,这种类型的滤波器可能会导致ERP波形的幅度显著减小和形状失真。因此,需要识别更合适的滤波器。在本文中,我们比较了另一种FIR滤波器的性能,与矩形窗滤波器不同,这种滤波器采用了一种优化算法进行设计,可减少信号失真并最大化信号提取(在此称为最优FIR滤波器)。我们将这两种类型的几种不同滤波器应用于包含P300成分的ERP数据。比较结果显示,矩形窗滤波器减少了高频噪声对ERP的影响,但这样做会导致P300幅度大幅衰减,在某些情况下,波形形状也会出现严重失真,从而导致潜伏期估计出现重大误差。相比之下,最优FIR滤波器能够保留P300的幅度、形态和潜伏期,并且比矩形窗滤波器更有效地消除高频噪声。本文还讨论了这些结果对数据采集和分析的意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验