McFarlane S, Cooper E
Department of Physiology, McGill University, Montreal, Quebec, Canada.
J Neurosci. 1993 Jun;13(6):2591-600. doi: 10.1523/JNEUROSCI.13-06-02591.1993.
Voltage-gated potassium (K) currents are important in controlling a neuron's excitability. We have shown previously (McFarlane and Cooper, 1992) that neonatal superior cervical ganglia (SCG) neurons express three voltage-gated K currents: a noninactivating delayed-rectifier type current (IK), a rapidly inactivating A-current (IAf), and a slowly inactivating A-current (IAs). When grown in culture for 4 weeks without other cell types, SCG neurons lose their expression of IAf and IAs, suggesting that an extrinsic factor(s) is involved in controlling the expression of these currents. In vivo, SCG neurons are surrounded by non-neuronal cells. Therefore, in this study we investigated whether the ganglionic non-neuronal cells provide a factor required for A-current expression. We show that postnatal day 1 (P1) SCG neurons continue to express IAf and IAs when cocultured with their ganglionic non-neuronal cells. Medium conditioned by ganglionic non-neuronal cells mimics the non-neuronal cell influence on IAf and IAs expression, suggesting that the effects of non-neuronal cells are mediated by way of a secreted factor. Ciliary neurotrophic factor, a factor present in peripheral non-neuronal cells, had similar effects to those of ganglionic cell-conditioned medium. Moreover, we find that the dependence of IAf on a non-neuronal cell factor is developmentally regulated; P14 neurons grown in culture without other cell types continue to express IAf. However, IAs on P14 neurons maintains its dependence on a factor from non-neuronal cells. Finally, in addition to extrinsic control of voltage-gated K currents, we suggest that SCG neurons use intrinsic mechanisms to coordinate their expression of IAf, IAs, and IK such that changes in one K current are compensated for by reciprocal changes in one or more of the other K currents.
电压门控钾(K)电流在控制神经元的兴奋性方面起着重要作用。我们之前已经表明(麦克法兰和库珀,1992年),新生大鼠颈上神经节(SCG)神经元表达三种电压门控K电流:一种非失活延迟整流型电流(IK)、一种快速失活A电流(IAf)和一种缓慢失活A电流(IAs)。当在无其他细胞类型的培养条件下生长4周时,SCG神经元失去了IAf和IAs的表达,这表明一种外在因素参与了这些电流表达的控制。在体内,SCG神经元被非神经元细胞所包围。因此,在本研究中,我们调查了神经节非神经元细胞是否提供了A电流表达所需的一种因素。我们发现,出生后第1天(P1)的SCG神经元在与其神经节非神经元细胞共培养时继续表达IAf和IAs。由神经节非神经元细胞条件化的培养基模拟了非神经元细胞对IAf和IAs表达的影响,这表明非神经元细胞的作用是通过一种分泌因子介导的。睫状神经营养因子,一种存在于外周非神经元细胞中的因子,对IAf和IAs表达的影响与神经节细胞条件化培养基的影响相似。此外,我们发现IAf对非神经元细胞因子的依赖性是受发育调节的;在无其他细胞类型的培养条件下生长的P14神经元继续表达IAf。然而,P14神经元上的IAs仍然依赖于来自非神经元细胞的一种因子。最后,除了对电压门控K电流的外在控制外,我们认为SCG神经元利用内在机制来协调IAf、IAs和IK的表达,使得一种K电流的变化能够被一种或多种其他K电流的反向变化所补偿。