Liem L K, Wong C W, Lim A, Li B F
Chemical Carcinogenesis Laboratory, National University of Singapore.
J Mol Biol. 1993 Jun 20;231(4):950-9. doi: 10.1006/jmbi.1993.1344.
Oligodeoxynucleotides of various chain lengths (p(Bp)nB, n < or = 9) and the eight possible dinucleotide phosphates (pm6GpB and pBpm6G), each containing a single O6-methylguanine residue (m6G), were used to study the repair kinetics of this lesion by the cloned DNA repair proteins; human 21 kDa O6-methylguanine-DNA methyltransferase (MGMT), human 43 kDa glutathione-S-transferase fused MGMT (GSTMGMT) and the Escherichia coli 39 kDa ada protein. The observed second-order repair rate constants are dependent upon both the chain length of the oligonucleotide substrates for all three proteins and in the case assuming O6-methylguanine is similar to B). The differences observed in the ratios of the rate constants for the substrates with five and four base residues; 125 for the E. coli 39 kDa ada protein, 640 for the human MGMT and 27,800 for the human fusion protein GSTMGMT, suggest that the pentanucleotide phosphate containing this lesion is the "optimal" substrate for the proteins. Surprisingly, the human GSTMGMT is shown to be more effective in the repair of longer substrates with the second-order repair rate constants for TATA-Cm6GTATA being 6.16 x 10(6) for GSTMGMT, 2.00 x 10(6) for MGMT and 0.27 x 10(6) M-1 s-1 for the E. coli 39 kDa ada protein. Thus, the presence of an additional protein domain at the N terminus of human MGMT can alter its selectivity towards certain substrates. Although a number of peptide domains are conserved between the E. coli 39 kDa ada protein and phosphates can also be used to explain the observed sequence specific repair of this lesion within certain DNA sequences.
使用各种链长的寡脱氧核苷酸(p(Bp)nB,n≤9)以及八种可能的二核苷酸磷酸酯(pm6GpB和pBpm6G),每种都含有单个O6-甲基鸟嘌呤残基(m6G),来研究克隆的DNA修复蛋白对该损伤的修复动力学;人21 kDa O6-甲基鸟嘌呤-DNA甲基转移酶(MGMT)、人43 kDa谷胱甘肽-S-转移酶融合MGMT(GSTMGMT)和大肠杆菌39 kDa ada蛋白。观察到的二级修复速率常数取决于所有三种蛋白质的寡核苷酸底物的链长,并且在假设O6-甲基鸟嘌呤与B相似的情况下也是如此。在具有五个和四个碱基残基的底物的速率常数比值中观察到的差异;大肠杆菌39 kDa ada蛋白为125,人MGMT为640,人融合蛋白GSTMGMT为27800,表明含有该损伤的五核苷酸磷酸酯是这些蛋白质的“最佳”底物。令人惊讶的是,人GSTMGMT在修复较长底物方面更有效,TATA-Cm6GTATA的二级修复速率常数对于GSTMGMT为6.16×10(6),对于MGMT为2.00×10(6),对于大肠杆菌39 kDa ada蛋白为0.27×10(6) M-1 s-1。因此,人MGMT N端额外蛋白质结构域的存在可以改变其对某些底物的选择性。尽管大肠杆菌39 kDa ada蛋白和磷酸酯之间有许多肽结构域是保守的,但也可以用来解释在某些DNA序列中观察到的该损伤的序列特异性修复。