Wolberg W H, Street W N, Heisey D M, Mangasarian O L
Department of Surgery, University of Wisconsin, Madison, USA.
Anal Quant Cytol Histol. 1995 Aug;17(4):257-64.
Visual assessments of nuclear grade are subjective yet still prognostically important. Now, computer-based analytical techniques can objectively and accurately measure size, shape and texture features, which constitute nuclear grade. The cell samples used in this study were obtained by fine needle aspiration (FNA) during the diagnosis of 187 consecutive patients with invasive breast cancer. Regions of FNA preparations to be analyzed were digitized and displayed on a computer monitor. Nuclei to be analyzed were roughly outlined by an operator using a mouse. Next, the computer generated a "snake" that precisely enclosed each designated nucleus. Ten nuclear features were then calculated for each nucleus based on these snakes. These results were analyzed statistically and by an inductive machine learning technique that we developed and call "recurrence surface approximation" (RSA). Both the statistical and RSA machine learning analyses demonstrated that computer-derived nuclear features are prognostically more important than are the classic prognostic features, tumor size and lymph node status.