Povill R, Riu P
Department of d'Enginyeria Electrònica, Universitat Politècnicade Catalunya, Barcelona, Spain.
Physiol Meas. 1995 Aug;16(3 Suppl A):A69-78. doi: 10.1088/0967-3334/16/3a/007.
The time domain change in human body impedance, in short intervals, usually falls into the approximation delta Z << Z0 (delta Z: impedance change, Z0: base impedance). This makes it possible to obtain both an image and an estimate of the log-conductivity change for the considered section using backprojection algorithms. In multifrequency tomography, however, the impedance change can be very large, depending on the applied frequencies. In this situation it is possible to obtain images using the methods applied in dynamic impedance imaging, but the estimate of the impedance change becomes highly non-linear. We have developed an algorithm based on the analytical solution of the linearized Poisson equation in a curvilinear space formed by the current lines and the equipotential lines. In order to set the correct boundary conditions, the current profile under the electrodes has been numerically computed. The behaviour of the algorithm has been assessed using the voltages obtained by analytically solving the direct problem in a circular region with small circular centred and non-centred perturbations of different size. The results are compared with those obtained using a backprojection algorithm. Although the developed algorithm displays higher linearity than a backprojection algorithm, it still shows a dependence on the perturbation size and position. This algorithm has been applied to the reconstruction of a series of measurements from 8 kHz to 500 kHz made in a sample of porcine liver immersed in a saline tank. A Cole-Cole model is fitted to the data. The parameters of this model are compared with those calculated from a 4-wire measurements using a commercial impedance analyser.
人体阻抗在短时间间隔内的时域变化通常近似为ΔZ << Z0(ΔZ:阻抗变化,Z0:基础阻抗)。这使得使用反投影算法能够获得所考虑截面的电导率对数变化的图像和估计值。然而,在多频层析成像中,阻抗变化可能会非常大,这取决于所施加的频率。在这种情况下,可以使用动态阻抗成像中应用的方法来获取图像,但阻抗变化的估计会变得高度非线性。我们基于由电流线和等势线形成的曲线空间中线性化泊松方程的解析解开发了一种算法。为了设置正确的边界条件,对电极下方的电流分布进行了数值计算。使用在具有不同大小的小圆形中心和非中心扰动的圆形区域中解析求解直接问题所获得的电压来评估该算法的性能。将结果与使用反投影算法获得的结果进行比较。尽管所开发的算法显示出比反投影算法更高的线性度,但它仍然表现出对扰动大小和位置的依赖性。该算法已应用于对浸没在盐水中的猪肝样本进行的从8 kHz到500 kHz的一系列测量的重建。将科尔 - 科尔模型拟合到数据上。将该模型的参数与使用商用阻抗分析仪通过四线测量计算得到的参数进行比较。