Suppr超能文献

盘基网柄菌和大鼠肝脏中一种新的、不依赖磷脂酶C的肌醇1,4,5-三磷酸形成途径。

A novel, phospholipase C-independent pathway of inositol 1,4,5-trisphosphate formation in Dictyostelium and rat liver.

作者信息

Van Dijken P, de Haas J R, Craxton A, Erneux C, Shears S B, Van Haastert P J

机构信息

Department of Biochemistry, University of Groningen, The Netherlands.

出版信息

J Biol Chem. 1995 Dec 15;270(50):29724-31. doi: 10.1074/jbc.270.50.29724.

Abstract

In an earlier study a mutant Dictyostelium cell-line (plc-) was constructed in which all phospholipase C activity was disrupted and nonfunctional, yet these cells had nearly normal Ins(1,4,5)P3 levels (Drayer, A.L., Van Der Kaay, J., Mayr, G.W, Van Haastert, P.J.M. (1990) EMBO J. 13, 1601-1609). We have now investigated if these cells have a phospholipase C-independent de novo pathway of Ins(1,4,5)P3 synthesis. We found that homogenates of plc- cells produce Ins(1,4,5)P3 from endogenous precursors. The enzyme activities that performed these reactions were located in the particulate cell fraction, whereas the endogenous substrate was soluble and could be degraded by phytase. We tested various potential inositol polyphosphate precursors and found that the most efficient were Ins(1,3,4,5,6)P5, Ins(1,3,4,5)P4, and Ins(1,4,5,6)P4. The utilization of Ins(1,3,4,5,6)P5, which can be formed independently of phospholipase C by direct phosphorylation of inositol (Stephens, L.R. and Irvine, R.F. (1990) Nature 346, 580-582), provides Dictyostelium with an alternative and novel pathway of de novo Ins(1,4,5)P3 synthesis. We further discovered that Ins(1,3,4,5,6)P5 was converted to Ins(1,4,5)P3 via both Ins(1,3,4,5)P4 and Ins(1,4,5,6)P4. In the absence of calcium no Ins(1,4,5)P3 formation could be observed; half-maximal activity was observed at low micromolar calcium concentrations. These reaction steps could also be performed by a single enzyme purified from rat liver, namely, the multiple inositol polyphosphate phosphatase. These data indicate that organisms as diverse as rat and Dictyostelium possess enzyme activities capable of synthesizing the second messengers Ins(1,4,5)P3 and Ins(1,3,4,5)P4 via a novel phospholipase C-independent pathway.

摘要

在早期的一项研究中,构建了一种突变的盘基网柄菌细胞系(plc-),其中所有磷脂酶C活性均被破坏且无功能,但这些细胞的肌醇-1,4,5-三磷酸(Ins(1,4,5)P3)水平几乎正常(德雷尔,A.L.,范德凯,J.,迈尔,G.W,范哈斯特,P.J.M.(1990年)《欧洲分子生物学组织杂志》13卷,1601 - 1609页)。我们现在研究了这些细胞是否具有一条不依赖磷脂酶C的Ins(1,4,5)P3从头合成途径。我们发现plc-细胞的匀浆能从内源性前体产生Ins(1,4,5)P3。进行这些反应的酶活性位于细胞的颗粒部分,而内源性底物是可溶的,并且能被植酸酶降解。我们测试了各种潜在的肌醇多磷酸前体,发现最有效的是肌醇-1,3,4,5,6-五磷酸(Ins(1,3,4,5,6)P5)、肌醇-1,3,4,5-四磷酸(Ins(1,3,4,5)P4)和肌醇-1,4,5,6-四磷酸(Ins(1,4,5,6)P4)。Ins(1,3,4,5,6)P5可通过肌醇的直接磷酸化独立于磷脂酶C形成(斯蒂芬斯,L.R.和欧文,R.F.(1990年)《自然》346卷,580 - 582页),它为盘基网柄菌提供了一条全新的Ins(1,4,5)P3从头合成途径。我们进一步发现,Ins(1,3,4,5,6)P5通过Ins(1,3,4,5)P4和Ins(1,4,5,6)P4两者转化为Ins(1,4,5)P3。在没有钙的情况下,未观察到Ins(1,4,5)P3的形成;在低微摩尔浓度的钙时观察到半数最大活性。这些反应步骤也可以由从大鼠肝脏纯化的单一酶,即多种肌醇多磷酸磷酸酶来进行。这些数据表明,像大鼠和盘基网柄菌这样不同的生物体都拥有能够通过一条不依赖磷脂酶C的新途径合成第二信使Ins(1,4,5)P3和Ins(1,3,4,5)P4的酶活性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验