Suppr超能文献

Regulation of morphine antiallodynic efficacy by cholecystokinin in a model of neuropathic pain in rats.

作者信息

Nichols M L, Bian D, Ossipov M H, Lai J, Porreca F

机构信息

Department of Pharmacology, University of Arizona Health Sciences Center, Tucson, USA.

出版信息

J Pharmacol Exp Ther. 1995 Dec;275(3):1339-45.

PMID:8531101
Abstract

Neuropathic pains have often been classified as opioid-resistant. Here, spinal (intrathecal) actions of morphine and nonmorphine opioids have been studied in a nerve ligation model of neuropathic pain in rats. Mechanical allodynia was evaluated using von Frey filaments. Nerve-injured animals exhibited allodynia that was stable for up to 6 weeks after the surgery. Morphine did not alter allodynia at doses up to 300 nmol (100 micrograms). In contrast, [D-Ala2, NMPhe4, Gly-ol]enkephalin (DAMGO), a high-efficacy mu opioid agonist, produced a significant, dose-related antiallodynic action. [D-Ala2, Glu4]deltorphin (delta agonist) produced a significant antiallodynic effect only at 300 nmol, reaching approximately 70% of the maximum. Coadministration of morphine with a dose of [D-Ala2, Glu4]deltorphin, which was inactive alone, produced a significant and long-lasting antiallodynic action that was antagonized by NTI (delta receptor antagonist); NTI alone had no effect. Although blockade of cholecystokinin-B (CCKB) receptors with L365,260 did not produce effects alone, a significant antiallodynic action was observed when coadministered with morphine; this elevation of nociceptive threshold was abolished by NTI. The finding that DAMGO, but not very large doses of morphine, produced antiallodynic actions suggests that the ability of mu opioids to alleviate the allodynia is related, in part, to efficacy at postsynaptic mu receptors. At an inactive dose, a delta agonist or a CCKB antagonist enhanced morphine antiallodynic efficacy in an NTI-sensitive fashion. CCKB receptor blockade may enhance endogenous enkephalin actions, resulting in enhancement of morphine efficacy through a mu-delta receptor interaction.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验