Meese T S, Harris M G, Freeman T C
Cognitive Science Research Centre, School of Psychology, Birmingham University, Edgbaston, U.K.
Vision Res. 1995 Oct;35(20):2879-88. doi: 10.1016/0042-6989(95)00036-y.
Motion parallax provides cues to the three-dimensional layout of a viewed scene and, in particular, to surface tilt and slant. For example, as a textured surface, inclined around a horizontal axis, translates horizontally relative to an observer's view point, then, in the absence of head and eye movements, the observer's retinal flow will contain a one-dimensional (1D) vertical speed gradient. The direction of this gradient indicates the direction of surface tilt, and its magnitude and sign can be used in calculating the magnitude and sign of the surface slant. Alternatively, the same retinal flow contains a 1D translating component, plus a two-dimensional (2D) component of rotation (curl), and a 2D component of deformation (def). On this view, the direction of surface tilt is related to the orientation of def and the magnitude and sign of the surface slant is related to the magnitude and sign of def. We used computer generated random dot patterns as stimuli to determine whether the human visual system employs a 1D analysis (i.e. 1D speed gradients) or a 2D analysis (i.e. deformation) of surface slant from motion parallax. Using a matching technique we found compelling impressions of slant when we vector summed a translation field with (i) vertical shear, horizontal shear or deformation (made from vertical and horizontal shear), but not rotation; and (ii) vertical compression, horizontal compression or deformation (made from vertical and horizontal compression), but much less so for expansion. In both cases, the first three conditions contain def, but the fourth does not, and the last three conditions contain 1D speed gradients orthogonal to the perceived axis of inclination, but the first one does not. Therefore, the results from the first and fourth conditions distinguish between the two processing strategies. They support the idea that surface slant is coded by combining both horizontal and vertical speed gradients in a way similar to the 2D differential invariant def and oppose the view that surface slant is encoded by a 1D analysis of motion in a direction orthogonal to the perceived axis of inclination. In a further experiment, we found essentially no effect of reducing the field size from 18 to 9 deg.
运动视差为所观察场景的三维布局提供线索,尤其是关于表面倾斜和坡度的线索。例如,当一个围绕水平轴倾斜的有纹理表面相对于观察者的视点水平平移时,那么在头部和眼睛没有运动的情况下,观察者的视网膜流动将包含一维(1D)垂直速度梯度。这个梯度的方向表明表面倾斜的方向,其大小和符号可用于计算表面坡度的大小和符号。或者,相同的视网膜流动包含一个1D平移分量,加上一个二维(2D)旋转分量(旋度)和一个二维变形分量(散度)。从这个角度来看,表面倾斜的方向与散度的方向有关,而表面坡度的大小和符号与散度的大小和符号有关。我们使用计算机生成的随机点图案作为刺激物,以确定人类视觉系统是采用对运动视差引起的表面坡度进行一维分析(即一维速度梯度)还是二维分析(即变形)。使用匹配技术,我们发现当我们将平移场与(i)垂直剪切、水平剪切或由垂直和水平剪切组成的变形进行矢量求和时,会产生令人信服的坡度印象,但与旋转求和时则不会;以及(ii)垂直压缩、水平压缩或由垂直和水平压缩组成的变形进行矢量求和时也会产生令人信服的坡度印象,但与膨胀求和时则不太明显。在这两种情况下,前三个条件都包含散度,但第四个条件不包含,而后三个条件包含与感知倾斜轴正交的一维速度梯度,但第一个条件不包含。因此,第一个和第四个条件的结果区分了两种处理策略。它们支持这样一种观点,即表面坡度是通过以类似于二维微分不变量散度的方式组合水平和垂直速度梯度来编码的,并且反对表面坡度是通过在与感知倾斜轴正交的方向上对运动进行一维分析来编码的观点。在进一步的实验中,我们发现将视场大小从18度减小到9度基本上没有影响。