Shivers R R, McVicar L K
Department of Zoology, University of Western Ontario, London, Canada.
Microsc Res Tech. 1995 Aug 1;31(5):437-45. doi: 10.1002/jemt.1070310512.
Gap junctions provide the basis for the formation of elaborate networks of communication between cells in animal tissues. Electron microscopic examination of thin sections of plastic embedded gap junctions has provided valuable information on the anatomy and function of these remarkable structures. Freeze-fracture electron microscopy, however, has made available unique vistas of gap junction-bearing intramembrane surface--surface previously inaccessible to the researcher's eyes. Data on population density, distribution, size, geometry of intramembrane particle packing, and structural responses of gap junction components to experimental manipulation are simply and easily obtained with freeze fracture. Recent developments of sophisticated protocols of immunocytochemistry as applied to freeze-fracture replicas further serve to reinforce the notion that freeze-fracture is a powerful tool for study of gap junctions. Molecular techniques of gap junction gene transfection promise to add a truly unique dimension to investigations of the broad spectrum of functional roles of gap junctions.
间隙连接为动物组织中细胞间形成精细的通讯网络提供了基础。对塑料包埋的间隙连接薄切片进行电子显微镜检查,为这些非凡结构的解剖学和功能提供了有价值的信息。然而,冷冻断裂电子显微镜使人们能够看到带有间隙连接的膜内表面的独特景象——这是研究人员以前无法看到的表面。通过冷冻断裂可以简单而容易地获得关于膜内颗粒堆积的群体密度、分布、大小、几何形状以及间隙连接成分对实验操作的结构反应的数据。应用于冷冻断裂复制品的复杂免疫细胞化学方案的最新进展进一步强化了这样一种观念,即冷冻断裂是研究间隙连接的有力工具。间隙连接基因转染的分子技术有望为广泛研究间隙连接的功能作用增添一个真正独特的维度。