Suppr超能文献

Peroxisome proliferators activate Kupffer cells in vivo.

作者信息

Bojes H K, Thurman R G

机构信息

Department of Pharmacology and Curriculum in Toxicology, University of North Carolina at Chapel Hill 27599-7365, USA.

出版信息

Cancer Res. 1996 Jan 1;56(1):1-4.

PMID:8548746
Abstract

The mechanism by which peroxisome proliferators increase cell replication and cause liver tumors in rodents remains unknown. When activated, Kupffer cells, the resident hepatic macrophages, release a variety of mitogenic stimuli that could theoretically increase cell proliferation in nearby hepatocytes. Therefore, in the present study we evaluated the effect of two potent peroxisome proliferators, nafenopin and WY-14,643, on Kupffer cell activation in vivo. Kupffer cell phagocytosis was determined continuously by monitoring rates of colloidal carbon uptake in the isolated, perfused liver after drug treatment in vivo. In the absence of peroxisome proliferators, colloidal carbon increased rates of oxygen uptake from 88 +/- 10 to 110 +/- 11 mumol/g/h. Livers from rats treated with either nafenopin (2-24 h) or WY-14,643 (24 h) were perfused for approximately 15 min with Krebs-Henseleit buffer and then with buffer containing colloidal carbon (2 mg/ml). Five h after nafenopin treatment (100 mg/kg i.g.), basal rates of colloidal carbon uptake of 136 +/- 12 mg/g/h were increased to 188 +/- 12 and remained elevated after 24 h (203 +/- 3 mg/g/h). Nafenopin also increased rates in a dose-dependent manner (one-half-maximal response, approximately 75 mg/kg). Similarly, WY-14,643 elevated rates of colloidal carbon uptake 1.8-fold over controls. Functional parameters of Kupffer cells were also affected. For example, WY-14,643 increased plasma nitrite significantly. This study demonstrates clearly that nafenopin and WY-14,643 activate Kupffer cell phagocytosis, suggesting a role for cell-to-cell communication in the stimulation of cell replication by peroxisome proliferators.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验