Cotterill A M, Daly F, Holly J M, Hughes S C, Camacho-Hübner C, Abdulla A F, Gale E A, Savage M O
Department of Endocrinology, St Bartholomew's Hospital, London, UK.
Clin Endocrinol (Oxf). 1995 Nov;43(5):567-74. doi: 10.1111/j.1365-2265.1995.tb02921.x.
Insulin resistance increases during adolescence, and is exaggerated in patients with insulin dependent diabetes mellitus (IDDM). A relative deficiency of insulin-like growth factor-I (IGF-I) may contribute to this increased insulin requirement. Two mechanisms have been proposed: (a) increased GH secretion, caused by failure of IGF feedback control, leading to increased insulin resistance and (b) lack of insulin-like action of the IGFs which is reinforced by high plasma levels of IGFBP-1, an inhibitor of IGF action. The contribution of these two mechanisms to the 'dawn phenomenon' is assessed.
The two possible mechanisms were studied during the dawn rise of glucose in pubertal adolescent patients with IDDM. Two overnight studies were performed in each subject. Patients remained on the same insulin regimen throughout.
Twenty-two diabetic adolescent subjects, aged (mean +/- SEM) 14.0 +/- 0.4 years, duration of IDDM 7.9 +/- 0.8 years, were recruited. Pubertal status was: group 1 (breast stage 1-2; testicular volume < 4-8 ml) 3 male and 4 female, group 2 (breast stage 3; testicular volume 10-12 ml) 0 male 4 female, group 3 (breast stage 4-5; testicular volume 15-25 ml) 4 male and 7 female. Height standard deviation score (mean +/- SD) (-0.02 +/- 0.99) and daily insulin dose (50.4 +/- 3.1 U/day) did not change between studies. There were no differences in HbA1 (study A 11.26 +/- 0.45%, study B 11.09 +/- 0.42%).
The subjects were admitted for the two studies 0.3 +/- 0.03 years apart. Blood samples were taken via an indwelling cannula every 20 minutes between 1900 and 0700 h.
GH was assayed every 20 minutes, IGFBP-1, glucose and free insulin every hour and IGF-I at 0700 h. GH, IGFBP-1, IGF-I and free insulin were measured by radioimmunoassay. IGFBPs were also analysed by Western ligand blotting techniques. GH profiles were analysed by Pulsar and results compared by paired Student's t-test. The relations between the dawn rise in glucose and the changes in IGFBP-1, GH and free insulin were examined by multiple linear regression analysis.
Serum IGFBP-1 levels rose overnight in the two studies (study A, from 9 +/- 1 at 2200 to 59 +/- 9 micrograms/l at 0700 h; study B, from 10 +/- 1 at 2100 to 64 +/- 14 micrograms/l at 0700 h) whilst insulin levels fell from 47 +/- 5 at 2200 to 16 +/- 2 mU/l at 0700 h (study A) and from 45 +/- 5 at 2000 to 14 +/- 2 mU/l at 0700 h (study B). Glucose levels fell from 16.0 +/- 1.0 to 9.3 +/- 0.9 mmol/l at 0400 h, and then rose to 11.9 +/- 1.1 mmol/l at 0700 h during study A, and from 13.4 +/- 1.3 to 10.1 +/- 1.1 mmol/l at 0400 h and then rose to 13.5 +/- 1.0 mmol/l at 0700 h during study B. There were no differences in GH secretion between studies (mean GH levels (mean +/- SD) (study A, 15.7 +/- 6.6 mU/l; study B, 16.2 +/- 7.1 mU/l; correlation within subjects between studies r = 0.77, P < 0.001), sum of GH peaks (study A, 189.9 +/- 90.3 mU/l; study B, 185.8 +/- 100.2 mU/l; r = 0.57, P = 0.006)). Mean GH levels varied with pubertal stage (group 1, 12.1 +/- 1.5 mU/l; group 2, 23.3 +/- 2.1 mU/l; group 3, 15.3 +/- 1.2 mU/l). Serum IGF-I levels were not different (study A, 203 +/- 12 micrograms/l; study B, 218 +/- 13 micrograms/l). REGRESSION ANALYSIS: The change in plasma glucose between 0200 and 0700 h in both studies related to free insulin, IGFBP-1 and the sum of the GH levels over the preceding hour (log glucose = 7.87 + 5.32 log IGFBP-1 (P = 0.0001) - 5.05 log free insulin (P = 0.0001) - 1.44 log GH (P = 0.004); R2 = 72%). Mean overnight GH levels did not predict the morning rise in plasma glucose.
The morning rise of IGFBP-1 and plasma glucose appear to be related in this group of subjects with IDDM and this was a consistent finding in the two studies. This relation was additive to the effect of insulin deficiency.
胰岛素抵抗在青春期增加,在胰岛素依赖型糖尿病(IDDM)患者中更为明显。胰岛素样生长因子-I(IGF-I)相对缺乏可能导致胰岛素需求增加。提出了两种机制:(a)IGF反馈控制失败导致生长激素(GH)分泌增加,从而导致胰岛素抵抗增加;(b)IGF缺乏胰岛素样作用,而IGF作用抑制剂IGFBP-1的高血浆水平增强了这种作用。评估这两种机制对“黎明现象”的影响。
在青春期IDDM患者葡萄糖黎明上升期间研究这两种可能的机制。对每个受试者进行两项夜间研究。患者在整个过程中保持相同的胰岛素治疗方案。
招募了22名糖尿病青少年受试者,年龄(平均±标准误)14.0±0.4岁,IDDM病程7.9±0.8年。青春期状态为:第1组(乳房分期1-2期;睾丸体积<4-8 ml)3名男性和4名女性,第2组(乳房分期3期;睾丸体积10-12 ml)0名男性和4名女性,第3组(乳房分期4-5期;睾丸体积15-25 ml)4名男性和7名女性。身高标准差评分(平均±标准差)(-0.02±0.99)和每日胰岛素剂量(50.4±3.1 U/天)在研究之间没有变化。糖化血红蛋白A1水平无差异(研究A为11.26±0.45%,研究B为11.09±0.42%)。
受试者相隔0.3±0.03年接受两项研究。在1900至0700 h期间,每20分钟通过留置套管采集血样。
每20分钟测定一次GH,每小时测定一次IGFBP-1、葡萄糖和游离胰岛素,0700 h测定IGF-I。采用放射免疫分析法测定GH、IGFBP-1、IGF-I和游离胰岛素。还通过Western配体印迹技术分析IGFBPs。采用Pulsar分析GH谱,并通过配对t检验比较结果。通过多元线性回归分析检查葡萄糖黎明上升与IGFBP-1、GH和游离胰岛素变化之间的关系。
在两项研究中,血清IGFBP-1水平在夜间升高(研究A,从2200时的9±1升至0700时的59±9μg/l;研究B,从2100时的10±1升至0700时的64±14μg/l),而胰岛素水平从2200时的47±5降至0700时的16±2 mU/l(研究A),从2000时的45±5降至0700时的14±2 mU/l(研究B)。在研究A中,葡萄糖水平在0400时从16.0±1.0降至9.3±0.9 mmol/l,然后在0700时升至11.9±1.1 mmol/l;在研究B中,葡萄糖水平在0400时从13.4±1.3降至10.1±1.1 mmol/l,然后在0700时升至13.5±1.0 mmol/l。研究之间的GH分泌无差异(平均GH水平(平均±标准差)(研究A为15.7±6.6 mU/l;研究B为16.2±7.1 mU/l;研究之间受试者的相关性r = 0.77,P < 0.001),GH峰值总和(研究A为189.9±90.3 mU/l;研究B为185.8±100.2 mU/l;r = 0.57,P = 0.006))。平均GH水平随青春期阶段而变化(第1组为12.1±1.5 mU/l;第2组为23.3±2.1 mU/l;第3组为15.3±1.2 mU/l)。血清IGF-I水平无差异(研究A为203±12μg/l;研究B为218±13μg/l)。回归分析:两项研究中0200至0700 h血浆葡萄糖的变化与游离胰岛素、IGFBP-1以及前一小时GH水平总和相关(log葡萄糖 = 7.87 + 5.32 log IGFBP-1(P = 0.0001) - 5.05 log游离胰岛素(P = 0.0001) - 1.44 log GH(P = 0.004);R2 = 72%)。夜间平均GH水平不能预测早晨血浆葡萄糖的升高。
在这组IDDM受试者中,IGFBP-1和血浆葡萄糖的早晨升高似乎相关,这在两项研究中是一致的发现。这种关系是胰岛素缺乏效应的叠加。