Suppr超能文献

运用最优线性系统理论从运动学数据估算净关节扭矩。

Estimating net joint torques from kinesiological data using optimal linear system theory.

作者信息

Runge C F, Zajac F E, Allum J H, Risher D W, Bryson A E, Honegger F

机构信息

Mechanical Engineering Department, Stanford University, CA 94305-4021 USA.

出版信息

IEEE Trans Biomed Eng. 1995 Dec;42(12):1158-64. doi: 10.1109/10.476122.

Abstract

Net joint torques (NJT) are frequently computed to provide insights into the motor control of dynamic biomechanical systems. An inverse dynamics approach is almost always used, whereby the NJT are computed from 1) kinematic measurements (e.g., position of the segments), 2) kinetic measurements (e.g., ground reaction forces) that are, in effect, constraints defining unmeasured kinematic quantities based on a dynamic segmental model, and 3) numerical differentiation of the measured kinematics to estimate velocities and accelerations that are, in effect, additional constraints. Due to errors in the measurements, the segmental model, and the differentiation process, estimated NJT rarely produce the observed movement in a forward simulation when the dynamics of the segmental system are inherently unstable (e.g., human walking). Forward dynamic simulations are, however, essential to studies of muscle coordination. We have developed an alternative approach, using the linear quadratic follower (LQF) algorithm, which computes the NJT such that a stable simulation of the observed movement is produced and the measurements are replicated as well as possible. The LQF algorithm does not employ constraints depending on explicit differentiation of the kinematic data, but rather employs those depending on specification of a cost function, based on quantitative assumptions about data confidence. We illustrate the usefulness of the LQF approach by using it to estimate NJT exerted by standing humans perturbed by support-surface movements. We show that unless the number of kinematic and force variables recorded is sufficiently high, the confidence that can be placed in the estimates of the NJT, obtained by any method (e.g., LQF, or the inverse dynamics approach), may be unsatisfactorily low.

摘要

净关节力矩(NJT)常被计算出来,以深入了解动态生物力学系统的运动控制。几乎总是采用逆动力学方法,即根据以下条件计算NJT:1)运动学测量值(如各节段的位置);2)动力学测量值(如地面反作用力),实际上这些是基于动态节段模型定义未测量运动学量的约束条件;3)对测量得到的运动学进行数值微分,以估计速度和加速度,实际上这些是额外的约束条件。由于测量、节段模型和微分过程中的误差,当节段系统的动力学本质上不稳定时(如人类行走),估计得到的NJT在正向模拟中很少能产生观察到的运动。然而,正向动态模拟对于肌肉协调研究至关重要。我们开发了一种替代方法,使用线性二次跟随器(LQF)算法,该算法计算NJT,以便产生观察到的运动的稳定模拟,并尽可能复制测量值。LQF算法不采用依赖于运动学数据显式微分的约束条件,而是采用基于对数据置信度的定量假设来指定代价函数的约束条件。我们通过使用LQF方法估计站立的人受到支撑面运动干扰时所施加的NJT,来说明该方法的有用性。我们表明,除非记录的运动学和力变量数量足够多,否则通过任何方法(如LQF或逆动力学方法)获得的NJT估计值的置信度可能会低得令人不满意。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验