Suppr超能文献

Sphingosine and sphingosine 1-phosphate differentially modulate platelet-derived growth factor-BB-induced Ca2+ signaling in transformed oligodendrocytes.

作者信息

Fatatis A, Miller R J

机构信息

Department of Pharmacological and Physiological Sciences, University of Chicago, Illinois 60637, USA.

出版信息

J Biol Chem. 1996 Jan 5;271(1):295-301. doi: 10.1074/jbc.271.1.295.

Abstract

The roles of sphingosine and sphingosine 1-phosphate in Ca2+ signaling following platelet-derived growth factor (PDGF) receptor stimulation were investigated in the oligodendrocyte cell line CEINGE cl3, using single-cell fura-2 microfluorimetry and videoimaging. Two different Ca2+ responses were observed, which differed in their delays and kinetics. The first response, which occurred after a shorter delay, exhibited a single Ca2+ peak often followed by a plateau, while the second type of response was characterized by a longer delay and by Ca2+ spikes with different frequencies and amplitudes. The latter phenomenon was never observed after stimulation of G protein-coupled receptors for ATP, ET-1, and BK. The incubation with the inhibitor of sphingosine kinase, DL-threo-dihydrosphingosine, significantly increased the percentage of cells responding to PDGF-BB exposure with Ca2+ spikes (87 versus 47%), while it did not modify the Ca2+ response elicited by exposure to ATP, ET-1, or BK. Exposure to exogenous 10 microM sphingosine or 1 microM sphingosine 1-phosphate produced oscillatory and non-oscillatory Ca2+ responses, respectively, similar to those elicited by PDGF-BB. A second application of PDGF-BB, 30 min after the first, was normally ineffective in producing a Ca2+ response. However, if the second exposure was preceded by the inhibition of sphingosine 1-phosphate formation, an oscillatory Ca2+ response occurred in all cells. We conclude that intracellular levels of sphingosine and sphingosine 1-phosphate may differentially modulate Ca2+ signaling triggered by PDGF receptor stimulation in CEINGE cl3-transformed oligodendrocytes.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验