Dirven H A, Megens L, Oudshoorn M J, Dingemanse M A, van Ommen B, van Bladeren P J
Division of Toxicology, TNO Nutrition and Food Research Institute, Zeist, The Netherlands.
Chem Res Toxicol. 1995 Oct-Nov;8(7):979-86. doi: 10.1021/tx00049a012.
Development of drug resistance against alkylating cytostatic drugs has been associated with higher intracellular concentrations of glutathione (GSH) and increased expression of glutathione S-transferase (GST) enzymes. Therefore, enhanced detoxification by the glutathione/glutathione S-transferase pathway has been proposed as a major factor in the development of drug resistance toward alkylating agents. In this paper we describe 31P NMR and HPLC studies on the spontaneous and glutathione S-transferase catalyzed formation of glutathionyl conjugates of two metabolites of ifosfamide, i.e., 4-hydroxyifosfamide and ifosfamide mustard. At 25 degrees C activated ifosfamide (= 4-hydroxyifosfamide + aldoifosfamide) disappeared faster in the presence of a 10-fold excess of GSH (t1/2 = 107 min) compared to incubations without GSH (t1/2 = 266 min). No evidence for the formation of 4-glutathionyl ifosfamide was found. The ultimate alkylating species of ifosfamide is ifosfamide mustard (IM). In the absence of glutathione, the rate constant for the disappearance of the ifosfamide mustard signal at 25 degrees C (pH 7) was 1.98 x 10(-3) min-1 (t1/2 = 350 min). In the presence of a 10-fold molar excess of glutathione, this rate constant was 1.95 x 10(-3) min-1 (t1/2 = 355 min), indicating that the spontaneous formation of an aziridinium ion is the rate-limiting event in the reaction with glutathione. The aziridinium ion formed from IM can deprotonate upon formation, leading to the formation of a (noncharged) aziridine species. This intermediate (N-(2-chloroethyl)-N'-phosphoric acid diamide) was characterized by 31P, 1H, and 13C NMR spectra. When 2 mM ifosfamide mustard was incubated with 1 mM GSH in the presence of 40 microM GST P1-1, the formation of monoglutathionyl ifosfamide mustard was 2.3-fold increased above the spontaneous level. The other major human isoenzymes tested (A1-1, A2-2, and M1a-1a) did not influence the formation of monoglutathionyl ifosfamide mustard. The results of these studies demonstrate that increased levels of GST P1-1 can contribute to an enhanced detoxification of ifosfamide.
对烷化剂类细胞生长抑制剂产生耐药性与细胞内谷胱甘肽(GSH)浓度升高以及谷胱甘肽S-转移酶(GST)的表达增加有关。因此,谷胱甘肽/谷胱甘肽S-转移酶途径的解毒作用增强被认为是对烷化剂产生耐药性的主要因素。在本文中,我们描述了用31P核磁共振(NMR)和高效液相色谱(HPLC)对异环磷酰胺的两种代谢产物即4-羟基异环磷酰胺和异环磷酰胺氮芥与谷胱甘肽自发形成谷胱甘肽共轭物以及谷胱甘肽S-转移酶催化该反应的研究。在25℃时,与不存在谷胱甘肽的孵育情况(半衰期t1/2 = 266分钟)相比,在谷胱甘肽过量10倍的情况下,活化的异环磷酰胺(= 4-羟基异环磷酰胺 + 醛异环磷酰胺)消失得更快(t1/2 = 107分钟)。未发现形成4-谷胱甘肽基异环磷酰胺的证据。异环磷酰胺的最终烷化形式是异环磷酰胺氮芥(IM)。在不存在谷胱甘肽的情况下,25℃(pH 7)时异环磷酰胺氮芥信号消失的速率常数为1.98×10-3分钟-1(t1/2 = 350分钟)。在谷胱甘肽摩尔过量10倍的情况下,该速率常数为1.95×10-3分钟-1(t1/2 = 355分钟),这表明氮丙啶离子的自发形成是与谷胱甘肽反应中的限速步骤。由异环磷酰胺氮芥形成的氮丙啶离子在形成时可以去质子化,导致形成一种(不带电荷的)氮丙啶物种。这种中间体(N-(2-氯乙基)-N'-磷酸二酰胺)通过31P、1H和13C核磁共振光谱进行了表征。当2 mM异环磷酰胺氮芥与1 mM谷胱甘肽在40 μM GST P1-1存在下孵育时,单谷胱甘肽基异环磷酰胺氮芥的形成比自发水平增加了2.3倍。所测试的其他主要人类同工酶(A1-1、A2-2和M1a-1a)不影响单谷胱甘肽基异环磷酰胺氮芥的形成。这些研究结果表明,GST P1-1水平的升高可导致异环磷酰胺解毒作用增强。