Suppr超能文献

一种将支气管肺泡灌洗(BALF)分析结果用作间质性肺疾病诊断工具的计算机程序。

A computer program using BALF-analysis results as a diagnostic tool in interstitial lung diseases.

作者信息

Drent M, van Nierop M A, Gerritsen F A, Wouters E F, Mulder P G

机构信息

Department of Pulmonology, University Hospital Maastricht, The Netherlands.

出版信息

Am J Respir Crit Care Med. 1996 Feb;153(2):736-41. doi: 10.1164/ajrccm.153.2.8564126.

Abstract

Recently, we showed that it is possible to distinguish between three common interstitial lung diseases (ILD) with similarities in clinical presentation by using a number of selected variables derived from bronchoalveolar lavage fluid (BALF) analysis. The aim of this study was to develop a more general discriminant model, based on polychotomous logistic regression analysis. The 277 patients involved in the study belonged to diagnostic groups with sarcoidosis (n = 193), extrinsic allergic alveolitis (EAA; n = 39), and idiopathic pulmonary fibrosis (IPF; n = 45). The diagnosis had been established independently of the BALF-analysis results. The variables used to discriminate among these patient groups were the yield of recovered BALF, total cell count, and percentages of alveolar macrophages, lymphocytes, neutrophils, and eosinophils. In order to test the predictive power of the logistic model, we used 128 patients having sarcoidosis (n = 91), EAA (n = 5), or IPF (n = 32) from another hospital. In this test set the agreement of predicted with actual diagnostic-group membership was the same as in the learning set in which the logistic model was fitted: 94.5% of the cases were correctly classified. A validated computer program based on the polychotomous logistic regression model can be used to predict the diagnosis for an arbitrary patient with information provided by BALF analysis, and is thought to be of diagnostic value in patients suspected of having ILD.

摘要

最近,我们发现通过使用从支气管肺泡灌洗(BALF)分析中得出的一系列选定变量,有可能区分三种临床表现相似的常见间质性肺疾病(ILD)。本研究的目的是基于多分类逻辑回归分析开发一个更通用的判别模型。参与该研究的277例患者属于结节病(n = 193)、外源性过敏性肺泡炎(EAA;n = 39)和特发性肺纤维化(IPF;n = 45)诊断组。诊断的确立独立于BALF分析结果。用于区分这些患者组的变量包括回收的BALF产量、总细胞计数以及肺泡巨噬细胞、淋巴细胞、中性粒细胞和嗜酸性粒细胞的百分比。为了检验逻辑模型的预测能力,我们使用了来自另一家医院的128例患有结节病(n = 91)、EAA(n = 5)或IPF(n = 32)的患者。在这个测试集中,预测的诊断组与实际诊断组成员的一致性与拟合逻辑模型的学习集中相同:94.5%的病例被正确分类。基于多分类逻辑回归模型的经过验证的计算机程序可用于根据BALF分析提供的信息预测任意患者的诊断,并且被认为对疑似患有ILD的患者具有诊断价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验