Suppr超能文献

Effects of prolonged low frequency stimulation on skeletal muscle sarcoplasmic reticulum.

作者信息

Chin E R, Green H J, Grange F, Dossett-Mercer J, O'Brien P J

机构信息

Department of Kinesiology, University of Waterloo, ON, Canada.

出版信息

Can J Physiol Pharmacol. 1995 Aug;73(8):1154-64. doi: 10.1139/y95-165.

Abstract

The role of prolonged electrical stimulation on sarcoplasmic reticulum (SR) Ca2+ sequestration measured in vitro and muscle energy status in fast white and red skeletal muscle was investigated. Fatigue was induced by 90 min intermittent 10-Hz stimulation of rat gastrocnemius muscle, which led to reductions (p < 0.05) in ATP, creatine phosphate, and glycogen of 16, 55, and 49%, respectively, compared with non-stimulated muscle. Stimulation also resulted in increases (p < 0.05) in muscle lactate, creatine, Pi, total ADP, total AMP, IMP, and inosine. Calculated free ADP (ADPf) and free AMP (AMPf) were elevated 3- and 15-fold, respectively. No differences were found in the metabolic response between tissues obtained from the white (WG) and red (RG) regions of the gastrocnemius. No significant reductions is SR Ca2+ ATPase activity were observed in homogenate (HOM) or a crude SR fraction (CM) from WG or RG muscle following exercise. Maximum Ca2+ uptake in HOM and CM preparations was similar in control (C) and stimulated (St) muscles. However, Ca2+ uptake at 400 nM free Ca2+ was significantly reduced in CM from RG (0.108 +/- 0.04 to 0.076 +/- 0.02 mumol.mg-1 protein.min-1 in RG - C and RG - St, respectively). Collectively, these data suggest that reductions in muscle energy status are dissociated from changes in SR Ca2+ ATPase activity in vitro but are related to Ca2+ uptake at physiological free [Ca2+ bd in fractionated SR from highly oxidative muscle. Dissociation of SR Ca2+ ATPase activity from Ca2+ uptake may reflect differences in the mechanisms evaluated by these techniques.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验