Chen C, Nenov A, Skellett R, Fallon M, Bright L, Norris C H, Bobbin R P
Kresge Hearing Research Laboratory of the South, Department of Otorhinolaryngology and Biocommunication, Louisiana State University Medical Center, New Orleans 70112-2234, USA.
Hear Res. 1995 Jul;87(1-2):1-8. doi: 10.1016/0378-5955(95)00071-b.
Biochemical and pharmacological evidence supports a role for nitric oxide (NO) in the cochlea. In the present experiments, we tested sodium nitroprusside (SNP), an NO donor, applied by intracochlear perfusions on sound-evoked responses of the cochlea (CM, cochlear microphonic; SP, summating potential; EP, endocochlear potential; CAP, compound action potential) and in vitro on outer hair cell (OHC) voltage-induced length changes and current responses. In vivo application of SNP in increasing concentrations (10, 33, 100, 330 and 1000 microM) reduced all sound-evoked responses starting at about 300 microM. The responses continued to decline after a postdrug wash. At 1 mM SNP decreased EP slowly (approximately 80 min) whereas at 10 mM it reduced EP more rapidly (approximately 20 min). Ferricyanide (1 mM) and S-nitroso-N-acetylpenicillamine (SNAP; 1 mM) had no effect on sound-evoked cochlear potentials. Ferricyanide (1 mM and 10 mM) and ferrocyanide (10 mM) had no effect on EP. In vitro, SNP (10 mM) significantly reduced both OHC voltage-induced length changes and whole-cell outward currents. Results suggest that SNP, possibly acting by released NO, influences cochlear function through effects at the stria vascularis and at the OHCs.