Suppr超能文献

肌浆网钙释放通道的激活与失活:通过新型半合成鱼尼丁对机制进行分子剖析

Activation and deactivation of sarcoplasmic reticulum calcium release channels: molecular dissection of mechanisms via novel semi-synthetic ryanoids.

作者信息

Bidasee K R, Besch H R, Gerzon K, Humerickhouse R A

机构信息

Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis 46202-5120, USA.

出版信息

Mol Cell Biochem. 1995 Aug-Sep;149-150:145-60. doi: 10.1007/BF01076573.

Abstract

The plant alkaloids ryanodine and dehydroryanodine are high affinity, biphasic modulators of the intracellularly located, calcium-regulated calcium release channels of a variety of cell types. To date, little is certain about the molecular basis of the interactions that prompt low concentrations of ryanodine (nanomolar to low micromolar) to activate (open) the channels and higher concentrations to deactivate (functionally close) the sarcoplasmic reticulum calcium release channel. In the present study, we approached this question using novel, semi-synthetic C10-Oeq ester derivatives of ryanodine and dehydroryanodine as molecular probes of the ryanodine binding sites on the calcium release channel. Binding affinities of these C10-Oeq ester derivatives of ryanodine and dehydroryanodine with acidic, basic and neutral side chains (Kd values > 53.9 nM, Kd values 0.3-0.7 nM and Kd values 1.3-20.4 nM, compared with 2.3 and 2.8 nM for ryanodine and dehydroryanodine, respectively) were evaluated for their ability to modulate the patency of the sarcoplasmic reticulum calcium release channel. With the exception of only two derivatives tested to date, all the semi-synthetic C10-Oeq esters selectively activate the Ca2+ release channel. That is, they produce no functional closure of the sarcoplasmic reticulum calcium release channels at the highest concentration that could be tested. Half-maximal concentrations for activation (EC50act values) ranged from 0.87-4.2 microM, compared with an EC50act of 1.3 microM for ryanodine. Using a low concentration (0.5 nM) of a high specific activity, radioiodinated derivative of ryanodine, C10-Oeq N-(4-azido-5-125iodo salicyloyl) glycyl ryanodine (1400 Ci/mmol) as the radioligand in displacement binding affinity assays, two distinct, sequential ryanodine binding isotherms were demonstrated within the normal 0-300 nM ryanodine sigmoidal displacement curve. A high affinity site had an IC50 of 0.5 nM (Kd = 0.26 +/- 0.02 nM). Above this concentration, an apparent plateau occurred between 3 and 6 nM ryanodine, and at higher concentrations a lower affinity site was revealed that demonstrated an IC50 of about 25 nM (Kd = 11.7 +/- 1.2 nM). Scatchard analysis from direct binding of C10-Oeq N-(4-azido-5-125iodo salicyloyl) glycyl ryanodine to junctional sarcoplasmic reticulum vesicles also suggests the presence of more than one class of binding sites within the nanomolar concentration range. The high affinity site demonstrated a Bmax of 3 pmol/mg protein. We were unable to saturate the lower affinity binding sites with this ligand. To evaluate the functional effects occurring among sarcoplasmic reticulum calcium release channel monomers as a consequence of ryanodine's binding, we utilized a photo-activatable derivative of ryanodine, C10-Oeq N-(4-azido salicyloyl) glycyl ryanodine that demonstrates channel modulating characteristics similar to ryanodine. Covalently labeling the sarcoplasmic reticulum calcium-release channels with this ligand, followed by measurements of rates of calcium efflux and SDS-PAGE of the labeled protein, revealed that deactivation of the sarcoplasmic reticulum calcium release channels of skeletal muscle by this ryanoid occurred at concentrations which apparently produce virtually irreversibly interactions between receptor monomers. This 'polymerization' was indicated by the progressive appearance of two higher molecular weight protein bands on SDS-PAGE, concomitant with progressive decreases in the ryanodine receptor monomer band that runs at an apparent molecular mass of 365 kDa. In summary, we have prepared and utilized novel C10-Oeq ester derivatives of ryanodine and dehydroryanodine in studies aimed at better understanding the molecular basis for the complex biphasic actions of ryanodine on the sarcoplasmic reticulum calcium release channels from rabbit skeletal muscle cells. The described studies presage correlations that may be useful in furthering our understa

摘要

植物生物碱莱克多巴胺和去氢莱克多巴胺是多种细胞类型中位于细胞内的钙调节钙释放通道的高亲和力双相调节剂。迄今为止,关于促使低浓度莱克多巴胺(纳摩尔至低微摩尔)激活(打开)通道以及高浓度使其失活(功能性关闭)肌浆网钙释放通道的相互作用的分子基础,几乎没有定论。在本研究中,我们使用莱克多巴胺和去氢莱克多巴胺的新型半合成C10 - Oeq酯衍生物作为钙释放通道上莱克多巴胺结合位点的分子探针来探讨这个问题。评估了这些具有酸性、碱性和中性侧链的莱克多巴胺和去氢莱克多巴胺的C10 - Oeq酯衍生物的结合亲和力(解离常数Kd值分别>53.9 nM、0.3 - 0.7 nM和1.3 - 20.4 nM,而莱克多巴胺和去氢莱克多巴胺的Kd值分别为2.3和2.8 nM),以研究它们调节肌浆网钙释放通道开放程度的能力。除了迄今为止测试的仅两种衍生物外,所有半合成C10 - Oeq酯均选择性激活Ca2 +释放通道。也就是说,在可测试的最高浓度下,它们不会导致肌浆网钙释放通道发生功能性关闭。激活的半数最大浓度(EC50act值)范围为0.87 - 4.2 microM,而莱克多巴胺的EC50act为1.3 microM。在置换结合亲和力测定中,使用低浓度(0.5 nM)的高比活性放射性碘化莱克多巴胺衍生物C10 - Oeq N -(4 - 叠氮基 - 5 - 125碘水杨酰基)甘氨酰莱克多巴胺(1400 Ci/mmol)作为放射性配体,在正常的0 - 300 nM莱克多巴胺S形置换曲线内显示出两个不同的、连续的莱克多巴胺结合等温线。一个高亲和力位点的IC50为0.5 nM(Kd = 0.26 +/- 0.02 nM)。高于此浓度,在3至6 nM莱克多巴胺之间出现明显的平台期,在更高浓度下显示出一个较低亲和力位点,其IC50约为25 nM(Kd = 11.7 +/- 1.2 nM)。对C10 - Oeq N -(4 - 叠氮基 - 5 - 125碘水杨酰基)甘氨酰莱克多巴胺与连接肌浆网囊泡的直接结合进行Scatchard分析也表明在纳摩尔浓度范围内存在不止一类结合位点。高亲和力位点的Bmax为3 pmol/mg蛋白。我们无法用该配体使较低亲和力结合位点饱和。为了评估由于莱克多巴胺结合而在肌浆网钙释放通道单体之间发生的功能效应,我们使用了一种莱克多巴胺的光活化衍生物C10 - Oeq N -(4 - 叠氮基水杨酰基)甘氨酰莱克多巴胺,它表现出与莱克多巴胺相似的通道调节特性。用该配体对肌浆网钙释放通道进行共价标记,随后测量钙流出速率并对标记蛋白进行SDS - PAGE分析,结果表明这种类莱克多巴胺使骨骼肌的肌浆网钙释放通道失活的浓度,显然会在受体单体之间产生几乎不可逆的相互作用。这种“聚合”表现为SDS - PAGE上两条较高分子量蛋白带的逐渐出现,同时表观分子量为365 kDa的莱克多巴胺受体单体带逐渐减少。总之,我们制备并使用了莱克多巴胺和去氢莱克多巴胺的新型C10 - Oeq酯衍生物,旨在更好地理解莱克多巴胺对兔骨骼肌细胞肌浆网钙释放通道复杂双相作用的分子基础。所描述的研究预示着可能有助于进一步加深我们理解的相关性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验