Suppr超能文献

The molecular chaperone function of alpha-crystallin is impaired by UV photolysis.

作者信息

Borkman R F, McLaughlin J

机构信息

School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta 30332, USA.

出版信息

Photochem Photobiol. 1995 Dec;62(6):1046-51. doi: 10.1111/j.1751-1097.1995.tb02407.x.

Abstract

Buffer solutions of the lens protein gamma-crystallin and the enzymes aldolase and liver alcohol dehydrogenase became turbid and formed solid precipitate upon exposure to an elevated temperature of 63 degrees C or to UV radiation at 308 nm. When alpha-crystallin was added to the protein solutions in stoichiometric amounts, heat or UV irradiation did not cause turbidity, or turbidity developed much less rapidly than in the absence of alpha-crystallin. Hence, normal alpha-crystallin functioned as a "molecular chaperone," providing protection against both UV and heat-induced protein aggregation. When alpha-crystallin was preirradiated with UV at 308 nm, its ability to function as a chaperone vis-a-vis both UV and heat-induced aggregation was significantly impaired, but only at relatively high UV doses. A major effect of preirradiation of alpha-crystallin was to cause interpeptide crosslinking among the alpha A2 and alpha B2 subunits of the alpha-crystallin macromolecule. In our experiments alpha-crystallin was exposed to UV doses, which resulted in 0.50 and 90% crosslinking as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. alpha-Crystallin samples that were 50% and 90% crosslinked gave chaperone protection, which was increasingly impaired relative to unirradiated alpha-crystallin. The results are consistent with the notion that UV irradiation of alpha-crystallin results in loss of chaperone binding sites.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验