Suppr超能文献

用于自动分割的磁共振图像选择。

Selection of MR images for automated segmentation.

作者信息

McClain K J, Zhu Y, Hazle J D

机构信息

University of Texas M.D. Anderson Cancer Center, Department of Diagnostic Radiology, Houston 77030, USA.

出版信息

J Magn Reson Imaging. 1995 Sep-Oct;5(5):485-92. doi: 10.1002/jmri.1880050502.

Abstract

MR images show a large range of contrast for various tissues in the body and are ideal for multispectral segmentation. Typically, only two MR images (dual-echo series) are used for segmentation; however, other images are often available. We evaluated MR images from 40 patients to determine the optimal type and number of images required for segmentation of tissues associated with brain tumors (normal brain, edema, necrosis, and active tumor). Pattern recognition methods indicated that three MR images from the same slice location were adequate for segmentation, as defined by feature selection and feature extraction measures based on training fields. This result was also confirmed by visually examining segmented images for all 40 patients. This work demonstrates that by using existing image/statistical analysis techniques (feature selection and feature extraction), one can systematically determine the optimal type and number of MR images for tissue segmentation.

摘要

磁共振成像(MR)显示了人体各种组织的大范围对比度,是多光谱分割的理想选择。通常,仅使用两张MR图像(双回波序列)进行分割;然而,其他图像也经常可用。我们评估了40名患者的MR图像,以确定与脑肿瘤相关的组织(正常脑、水肿、坏死和活性肿瘤)分割所需的最佳图像类型和数量。模式识别方法表明,根据基于训练区域的特征选择和特征提取措施,来自同一切片位置的三张MR图像足以进行分割。对所有40名患者的分割图像进行视觉检查也证实了这一结果。这项工作表明,通过使用现有的图像/统计分析技术(特征选择和特征提取),可以系统地确定用于组织分割的MR图像的最佳类型和数量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验