Suppr超能文献

模糊c均值分割技术在多形性出血性胶质母细胞瘤磁共振图像组织分化中的应用

Application of fuzzy c-means segmentation technique for tissue differentiation in MR images of a hemorrhagic glioblastoma multiforme.

作者信息

Phillips W E, Velthuizen R P, Phuphanich S, Hall L O, Clarke L P, Silbiger M L

机构信息

Department of Radiology, Medical College of Georgia, Augusta 30912-3900, USA.

出版信息

Magn Reson Imaging. 1995;13(2):277-90. doi: 10.1016/0730-725x(94)00093-i.

Abstract

The application of a raw data-based, operator-independent MR segmentation technique to differentiate boundaries of tumor from edema or hemorrhage is demonstrated. A case of a glioblastoma multiforme with gross and histopathologic correlation is presented. The MR image data set was segmented into tissue classes based on three different MR weighted image parameters (T1-, proton density-, and T2-weighted) using unsupervised fuzzy c-means (FCM) clustering algorithm technique for pattern recognition. A radiological examination of the MR images and correlation with fuzzy clustering segmentations was performed. Results were confirmed by gross and histopathology which, to the best of our knowledge, reports the first application of this demanding approach. Based on the results of neuropathologic correlation, the application of FCM MR image segmentation to several MR images of a glioblastoma multiforme represents a viable technique for displaying diagnostically relevant tissue contrast information used in 3D volume reconstruction. With this technique, it is possible to generate segmentation images that display clinically important neuroanatomic and neuropathologic tissue contrast information from raw MR image data.

摘要

本文展示了一种基于原始数据、独立于操作员的磁共振成像(MR)分割技术,用于区分肿瘤边界与水肿或出血。文中介绍了一例多形性胶质母细胞瘤病例,并将大体病理与组织病理学进行了关联。使用无监督模糊c均值(FCM)聚类算法技术进行模式识别,根据三种不同的MR加权图像参数(T1加权、质子密度加权和T2加权)将MR图像数据集分割为不同的组织类别。对MR图像进行了放射学检查,并将其与模糊聚类分割结果进行了关联。大体病理和组织病理学结果证实了上述结果,据我们所知,这是首次报道这种具有挑战性的方法的应用。基于神经病理学关联结果,FCM MR图像分割应用于多形性胶质母细胞瘤的多个MR图像,是一种可行的技术,可用于在三维体积重建中显示具有诊断意义的组织对比信息。通过这种技术,可以从原始MR图像数据生成分割图像,显示临床上重要的神经解剖和神经病理组织对比信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验