Suppr超能文献

睡眠脑电图吸引子维度模式。

Patterns of attractor dimensions of sleep EEG.

作者信息

Pradhan N, Sadasivan P K, Chatterji S, Dutt D N

机构信息

Dept. of Psychopharmacology, National Institute of Mental Health & Neurosciences, Bangalore, India.

出版信息

Comput Biol Med. 1995 Sep;25(5):455-62. doi: 10.1016/0010-4825(95)00032-y.

Abstract

Low dimensional chaos is a property of many physiological oscillatory systems including the brain. Time series of sleep EEG records have been analyzed in the framework of recent developments in nonlinear dynamics. One of the characteristics of a chaotic time series is its attractor dimension. The running attractor dimension of a chaotic time series may reflect changes in states more accurately than manually scored records. In the present study the attractor dimensions of consecutive EEG segments of five sleep records were analyzed. The block of the EEG segment (window) was shifted by various lengths along the entire sleep data of each subject thus producing a running attractor dimension curve for each record. The attractor dimension values for different sleep stages were significantly different. The pattern of the running attractor dimension closely matched the scored hypnograms in these five sleep records.

摘要

低维混沌是包括大脑在内的许多生理振荡系统的一种特性。睡眠脑电图记录的时间序列已在非线性动力学最新进展的框架内进行了分析。混沌时间序列的一个特征是其吸引子维度。混沌时间序列的运行吸引子维度可能比人工评分记录更准确地反映状态变化。在本研究中,分析了五个睡眠记录中连续脑电图片段的吸引子维度。脑电图片段(窗口)块沿着每个受试者的整个睡眠数据以不同长度移动,从而为每个记录生成一条运行吸引子维度曲线。不同睡眠阶段的吸引子维度值有显著差异。在这五个睡眠记录中,运行吸引子维度的模式与评分的睡眠图紧密匹配。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验