Suppr超能文献

Encoding with bursting, subthreshold oscillations, and noise in mammalian cold receptors.

作者信息

Longtin A, Hinzer K

机构信息

Département de Physique, Université d'Ottawa, Canada.

出版信息

Neural Comput. 1996 Feb 15;8(2):215-55. doi: 10.1162/neco.1996.8.2.215.

Abstract

Mammalian cold thermoreceptors encode steady-state temperatures into characteristic temporal patterns of action potentials. We propose a mechanism for the encoding process. It is based on Plant's ionic model of slow wave bursting, to which stochastic forcing is added. The model reproduces firing patterns from cat lingual cold receptors as the parameters most likely to underlie the thermosensitivity of these receptors varied over a 25 degrees C range. The sequence of firing patterns goes from regular bursting, to simple periodic, to stochastically phase-locked firing or "skipping." The skipping at higher temperatures is shown to necessitate an interaction between noise and a subthreshold endogenous oscillation in the receptor. The basic period of all patterns is robust to noise. Further, noise extends the range of encodable stimuli. An increase in firing irregularity with temperature also results from the loss of stability accompanying the approach by the slow dynamics of a reverse Hopf bifurcation. The results are not dependent on the precise details of the Plant model, but are generic features of models where an autonomous slow wave arises through a Hopf bifurcation. The model also addresses the variability of the firing patterns across fibers. An alternate model of slow-wave bursting (Chay and Fan 1993) in which skipping can occur without noise is also analyzed here in the context of cold thermoreception. Our study quantifies the possible origins and relative contribution of deterministic and stochastic dynamics to the coding scheme. Implications of our findings for sensory coding are discussed.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验