Suppr超能文献

二元振荡器网络:弥合神经网络实验建模与抽象建模之间的差距。

Binary-oscillator networks: bridging a gap between experimental and abstract modeling of neural networks.

作者信息

Wang W P

机构信息

Department of Mathematics, University of North Carolina, Chapel Hill 27599, USA.

出版信息

Neural Comput. 1996 Feb 15;8(2):319-39. doi: 10.1162/neco.1996.8.2.319.

Abstract

This paper proposes a simplified oscillator model, called binary-oscillator, and develops a class of neural network models having binary-oscillators as basic units. The binary-oscillator has a binary dynamic variable v = +/- 1 modeling the "membrane potential" of a neuron, and due to the presence of a "slow current" (as in a classical relaxation-oscillator) it can oscillate between two states. The purpose of the simplification is to enable abstract algorithmic study on the dynamics of oscillator networks. A binary-oscillator network is formally analogous to a system of stochastic binary spins (atomic magnets) in statistical mechanics.

摘要

本文提出了一种简化的振荡器模型,称为二元振荡器,并开发了一类以二元振荡器为基本单元的神经网络模型。二元振荡器具有一个二元动态变量v = +/- 1,用于模拟神经元的“膜电位”,并且由于存在“慢电流”(如在经典的弛豫振荡器中),它可以在两种状态之间振荡。简化的目的是能够对振荡器网络的动力学进行抽象算法研究。二元振荡器网络在形式上类似于统计力学中的随机二元自旋(原子磁体)系统。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验