Suppr超能文献

ATP-Dependent inhibition of Ca2+-activated K+ channels in vascular smooth muscle cells by neuropeptide Y.

作者信息

Xiong Z, Cheung D W

机构信息

University of Ottawa, Heart Institute and Department of Pharmacology, 40 Ruskin Street, Ottawa K1Y 4E9, Canada.

出版信息

Pflugers Arch. 1995 Nov;431(1):110-6. doi: 10.1007/BF00374383.

Abstract

Neuropeptide Y(NPY) inhibits Ca2+-activated K+ channels reversibly in vascular smooth muscle cells from the rat tail artery. NPY (200 microM) had no effect in the absence of intracellular adenosine 5'-triphosphate (ATP) and when the metabolic poison cyanide-M-chlorophenyl hydrozone (10 microM) was included in the intracellular pipette solution. NPY was also not effective when ATP was substituted by the non-hydrolysable ATP analogue adenosine 5'-[beta gamma-methylene]-triphosphate (AMP-PCP). NPY inhibited Ca2+-activated K+ channel activity when ATP was replaced by adenosine 5'-O-(3-thiotriphosphate) (ATP [gamma-S]) and the inhibition was not readily reversed upon washing. Protein kinase inhibitor (1 microM), a specific inhibitor of adenosine 3', 5'-cyclic monophosphate-dependent protein kinase, had no significant effect on the inhibitory action of NPY. The effect of NPY on single-channel activity was inhibited by the tyrosine kinase inhibitor genistein (10 microM) but not by daidzein, an inactive analogue of genistein. These observations suggest that the inhibition by NPY of Ca2+-activated K+ channels is mediated by ATP-dependent phosphorylation. The inhibitory effect of NPY was antagonized by the tyrosine kinase inhibitor genistein.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验