Suppr超能文献

酿酒酵母对杀伤毒素具有抗性的kre12突变体:二级K1膜受体的遗传学和生物化学证据

Killer-toxin-resistant kre12 mutants of Saccharomyces cerevisiae: genetic and biochemical evidence for a secondary K1 membrane receptor.

作者信息

Schmitt M J, Compain P

机构信息

Institut für Mikrobiologie und Weinforschung, Johannes-Gutenberg-Universität Mainz, D-55099 Mainz, Germany.

出版信息

Arch Microbiol. 1995 Dec;164(6):435-43. doi: 10.1007/BF02529742.

Abstract

The Saccharomyces cerevisiae killer toxin K1 is a secreted alpha/beta-heterodimeric protein toxin that kills sensitive yeast cells in a receptor-mediated two-stage process. The first step involves toxin binding to beta-1,6-D-glucan-components of the outer yeast cell surface; this step is blocked in yeast mutants bearing nuclear mutations in any of the KRE genes whose products are involved in synthesis and/or assembly of cell wall beta-D-glucans. After binding to the yeast cell wall, the killer toxin is transferred to the cytoplasmic membrane, subsequently leading to cell death by forming lethal ion channels. In an attempt to identify a secondary K1 toxin receptor at the plasma membrane level, we mutagenized sensitive yeast strains and isolated killer-resistant (kre) mutants that were resistant as spheroplasts. Classical yeast genetics and successive back-crossings to sensitive wild-type strains indicated that this toxin resistance is due to mutation(s) in a single chromosomal yeast gene (KRE12), rendering kre12 mutants incapable of binding significant amounts of toxin to the membrane. Since kre12 mutants showed normal toxin binding to the cell wall, but markedly reduced membrane binding, we isolated and purified cytoplasmic membranes from a kre12 mutant and from an isogenic Kre12(+) strain and analyzed the membrane protein patterns by 2D-electrophoresis using a combination of isoelectric focusing and SDS-PAGE. Using this technique, three different proteins (or subunits of a single multimeric protein) were identified that were present in much lower amounts in the kre12 mutant. A model for K1 killer toxin action is presented in which the gene product of KRE12 functions in vivo as a K1 docking protein, facilitating toxin binding to the membrane and subsequent ion channel formation.

摘要

酿酒酵母杀伤毒素K1是一种分泌型α/β异二聚体蛋白毒素,它通过受体介导的两阶段过程杀死敏感酵母细胞。第一步涉及毒素与酵母细胞外表面的β-1,6-D-葡聚糖成分结合;在任何KRE基因发生核突变的酵母突变体中,这一步骤都会被阻断,这些基因的产物参与细胞壁β-D-葡聚糖的合成和/或组装。与酵母细胞壁结合后,杀伤毒素被转移到细胞质膜,随后通过形成致死性离子通道导致细胞死亡。为了在质膜水平鉴定K1毒素的二级受体,我们对敏感酵母菌株进行诱变,并分离出作为原生质体具有抗性的杀伤抗性(kre)突变体。经典的酵母遗传学和与敏感野生型菌株的连续回交表明,这种毒素抗性是由于单个染色体酵母基因(KRE12)发生突变,使得kre12突变体无法将大量毒素结合到膜上。由于kre12突变体显示出毒素与细胞壁的正常结合,但膜结合明显减少,我们从kre12突变体和同基因的Kre12(+)菌株中分离并纯化了细胞质膜,并使用等电聚焦和SDS-PAGE相结合的二维电泳分析了膜蛋白模式。使用这种技术,鉴定出三种不同的蛋白质(或单个多聚体蛋白的亚基),它们在kre12突变体中的含量要低得多。本文提出了一个K1杀伤毒素作用模型,其中KRE12的基因产物在体内作为K1对接蛋白发挥作用,促进毒素与膜的结合以及随后的离子通道形成。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验