Janin J
Laboratoire de Biologie Structurale, UMR 9920 CNRS, Université Paris-Sud, Gif-sur-Yvette, France.
Biochimie. 1995;77(7-8):497-505. doi: 10.1016/0300-9084(96)88166-1.
Specific recognition is illustrated by X-ray structures of protease-inhibitor, antigen-antibody and other high affinity complexes including five electron transfer complexes. We attempt to give a physical definition to affinity and specificity on the basis of these data. In a protein-protein complex, specific recognition results from the assembly of complementary surfaces into well-packed interfaces that cover about 1500 A2 and contain about ten hydrogen bonds. These interfaces are larger than between molecules in protein crystals, and smaller than between subunits in oligomeric proteins. We relate the size and chemical nature of interfaces in complexes to the thermodynamical parameters that characterize affinity: the heat capacity and free enthalpy (Gibbs energy) of dissociation at equilibrium, the activation free enthalpy for the dissociation reaction. The same structural and thermodynamical parameters are inadequate for representing the specificity of recognition. We propose instead to describe specificity with the help of statistical physics, and we illustrate the application of the random energy model to antigen-antibody recognition by analyzing results of computer simulations by docking.
蛋白酶 - 抑制剂、抗原 - 抗体及其他高亲和力复合物(包括五种电子转移复合物)的X射线结构说明了特异性识别。我们试图基于这些数据对亲和力和特异性给出物理定义。在蛋白质 - 蛋白质复合物中,特异性识别源于互补表面组装成排列紧密的界面,该界面面积约为1500 Ų,包含约十个氢键。这些界面比蛋白质晶体中分子间的界面大,比寡聚蛋白中亚基间的界面小。我们将复合物中界面的大小和化学性质与表征亲和力的热力学参数联系起来:平衡解离时的热容和自由焓(吉布斯能),解离反应的活化自由焓。相同的结构和热力学参数不足以表示识别的特异性。相反,我们建议借助统计物理学来描述特异性,并通过对接分析计算机模拟结果来说明随机能量模型在抗原 - 抗体识别中的应用。