Phaneuf M D, Quist W C, Bide M J, LoGerfo F W
Deaconess Hospital/Harvard Medical School, Boston, MA 02215, USA.
J Appl Biomater. 1995 Winter;6(4):289-99. doi: 10.1002/jab.770060410.
Thrombosis remains a significant and potentially catastrophic complication of polyethylene terephthalate (Dacron) prosthetic vascular graft implantation. Numerous attempts have been made to create a novel surface that reduces the adverse effects of blood interaction with the material. The purpose of this study was to create reactive groups on Dacron without significantly altering the chemical and physical properties of the biomaterial. These groups would then serve as "anchor sites" for covalent attachment of the blood protein albumin to the surface, thus creating a more biocompatible surface. Denier reduction, an established textile chemistry procedure that creates carboxyl groups on the fiber surface via hydrolysis of the material, was performed at 100 degrees C using sodium hydroxide concentrations of 0.5, 1.0, 2.5, and 5.0% (treated materials referred to as 0.5% hydrolyzed etc.). Tensile strength determination of hydrolyzed materials revealed no statistically significant difference in material strength between control, 0.5, and 1.0% hydrolyzed materials; the 2.5 and 5.0% hydrolyzed materials had significant strength loss as compared to the controls. Significant fiber weight loss occurred in the 1.0, 2.5, and 5.0% hydrolyzed Dacron segments. The 0.5% hydrolyzed material did not have any significant weight loss. Covalent linkage of 125I-albumin to these modified materials using the crosslinker 1-ethyl-3-(3-dimethyl aminopropyl)-carbodiimide hydrochloride (EDC) resulted in the 0.5% hydrolyzed material having the greatest protein binding (330 ng/mg Dacron, 2,4-fold greater than control). Incubation of the 0.5% hydrolyzed material with EDC and various concentrations of 125I-albumin resulted in the 14.80 microM solution permitting the greatest binding per milligram Dacron (330 ng/mg Dacron). Scanning electron microscopy, performed blindly, revealed no change in the 0.5% hydrolyzed Dacron as compared to untreated Dacron. The 5.0% hydrolyzed Dacron, however, had noticeable structural damage on the outer periphery of the fiber surface. Observation of the untreated Dacron with nonspecifically bound albumin showed scattered areas of albumin adherent to the fiber surface whereas covalent linkage of albumin to the 0.5% hydrolyzed Dacron via EDC crosslinking showed numerous albumin moieties on each fiber. This study demonstrates that a clinically accepted biomaterial (Dacron) can be chemically modified, without significantly altering the physical and chemical characteristics of the biomaterial, in order to covalently bind albumin to the fiber surface. Thus, these results serve as foundation for creating potential novel biomaterials without significantly altering the properties of the original biomaterial.
血栓形成仍然是聚对苯二甲酸乙二酯(涤纶)人工血管移植的一种严重且可能引发灾难性后果的并发症。人们已进行了大量尝试来创造一种新型表面,以减少血液与材料相互作用的不良影响。本研究的目的是在不显著改变生物材料化学和物理性质的情况下,在涤纶表面产生反应基团。这些基团随后将作为血液蛋白白蛋白共价连接到表面的“锚定位点”,从而创造出更具生物相容性的表面。采用既定的纺织化学方法——旦尼尔减量,即在100摄氏度下使用浓度为0.5%、1.0%、2.5%和5.0%的氢氧化钠通过材料水解在纤维表面产生羧基(处理后的材料分别称为0.5%水解等)。对水解材料的拉伸强度测定显示,对照材料、0.5%和1.0%水解材料之间的材料强度在统计学上无显著差异;与对照相比,2.5%和5.0%水解材料的强度有显著损失。在1.0%、2.5%和5.0%水解的涤纶片段中出现了显著的纤维重量损失。0.5%水解材料没有任何显著的重量损失。使用交联剂1-乙基-3-(3-二甲基氨基丙基)-碳二亚胺盐酸盐(EDC)将125I-白蛋白共价连接到这些改性材料上,结果显示0.5%水解材料具有最大的蛋白质结合量(330 ng/mg涤纶,比对照高2.4倍)。将0.5%水解材料与EDC和不同浓度的125I-白蛋白一起孵育,结果显示14.80 microM的溶液每毫克涤纶允许最大结合量(330 ng/mg涤纶)。盲法进行的扫描电子显微镜检查显示,与未处理的涤纶相比,0.5%水解的涤纶没有变化。然而,5.0%水解的涤纶在纤维表面外周有明显的结构损伤。观察未处理的涤纶与非特异性结合的白蛋白,发现纤维表面有分散的白蛋白附着区域,而通过EDC交联将白蛋白共价连接到0.5%水解的涤纶上,显示每根纤维上有大量白蛋白部分。本研究表明,一种临床上可接受的生物材料(涤纶)可以在不显著改变生物材料物理和化学特性的情况下进行化学改性,以便将白蛋白共价连接到纤维表面。因此,这些结果为创造潜在的新型生物材料奠定了基础,而不会显著改变原始生物材料的特性。