Suppr超能文献

7-氮杂苯并咪唑基钴胺素和5,6-二甲基-7-氮杂苯并咪唑基钴胺素,由运动发酵单胞菌从4(5)-氨基咪唑合成的新型维生素B12类似物。

7-Azabenzimidazolylcobamide and 5,6-dimethyl-7-azabenzimidazolylcobamide, new vitamin B12-analogs synthesized from 4(5)-aminoimidazole by Eubacterium limosum.

作者信息

Endres B, Würfel A, Vogler B, Renz P

机构信息

Institut für Biologische Chemie und Ernährungswissenschaft, Universität Hohenheim, Stuttgart, Germany.

出版信息

Biol Chem Hoppe Seyler. 1995 Oct;376(10):595-601. doi: 10.1515/bchm3.1995.376.10.595.

Abstract

In anaerobic bacteria, glycine, formate, and the amide-N of glutamine are building blocks for the biosynthesis of the imidazole moiety of the vitamin B12-base 5,6-dimethylbenzimidazole. These building blocks are also used for the biosynthesis of the imidazole moiety of purine bases. Therefore we tested 4(5)-aminoimidazole, the base moiety of the purine nucleotide precursor 5-aminoimidazole ribonucleotide, for its putative function as precursor of 5,6-dimethylbenzimidazole. The anaerobic vitamin B12-producer Eubacterium limosum, grown in the presence of [2-13C]4(5)-aminoimidazole, synthesized nonlabeled vitamin B12, but also [2-13C]7-azabenzimidazolylcobamide and [2-13C]5,6-dimethyl-7-azabenzimidazolylcobamide. [2-13C]limidazole was used by E. limosum to form [2-13C]imidazolylcobamide. Simultaneously nonlabeled vitamin B12 was synthesized. This shows that 4(5)-aminoimidazole and imidazole are not intermediates in the biosynthesis of 5,6-dimethylbenzimidazole. However, 4(5)-aminoimidazole has obviously a structure similar to the structure of an as yet unknown precursor of the vitamin B12-base, and is therefore transformed into the aza analogs. In order to prepare a reference compound 4(5)-azabenzimidazole was added to a culture of Propionibacterium shermanii and to a culture of E. limosum, P. shermanil transformed this base mainly to 4-azabenzimidazolylcobamide, as determined by 1H NMR-spectroscopy (NOE experiment). In contrast E. limosum produced mainly 7-azabenzimidazolylcobamide. The reason for this difference is discussed.

摘要

在厌氧细菌中,甘氨酸、甲酸和谷氨酰胺的酰胺氮是维生素B12碱基5,6 - 二甲基苯并咪唑咪唑部分生物合成的原料。这些原料也用于嘌呤碱基咪唑部分的生物合成。因此,我们测试了嘌呤核苷酸前体5 - 氨基咪唑核糖核苷酸的碱基部分4(5) - 氨基咪唑作为5,6 - 二甲基苯并咪唑前体的假定功能。在[2 - 13C]4(5) - 氨基咪唑存在下生长的厌氧维生素B12产生菌黏液真杆菌,合成了未标记的维生素B12,同时还合成了[2 - 13C]7 - 氮杂苯并咪唑基钴胺素和[2 - 13C]5,6 - 二甲基 - 7 - 氮杂苯并咪唑基钴胺素。黏液真杆菌利用[2 - 13C]咪唑形成[2 - 13C]咪唑基钴胺素。同时合成了未标记的维生素B12。这表明4(5) - 氨基咪唑和咪唑不是5,6 - 二甲基苯并咪唑生物合成的中间体。然而,4(5) - 氨基咪唑的结构显然与维生素B12碱基的一种未知前体的结构相似,因此被转化为氮杂类似物。为了制备参考化合物,将4(5) - 氮杂苯并咪唑添加到谢氏丙酸杆菌培养物和黏液真杆菌培养物中,通过1H NMR光谱(NOE实验)测定,谢氏丙酸杆菌主要将该碱基转化为4 - 氮杂苯并咪唑基钴胺素。相比之下,黏液真杆菌主要产生7 - 氮杂苯并咪唑基钴胺素。讨论了这种差异的原因。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验