Suppr超能文献

苏云金芽孢杆菌毒素CryIAa和CryIAc对舞毒蛾(Lymantria dispar)的协同作用。

Synergistic effect of the Bacillus thuringiensis toxins CryIAa and CryIAc on the gypsy moth, Lymantria dispar.

作者信息

Lee M K, Curtiss A, Alcantara E, Dean D H

机构信息

Department of Biochemistry, Ohio State University, Columbus 43210, USA.

出版信息

Appl Environ Microbiol. 1996 Feb;62(2):583-6. doi: 10.1128/aem.62.2.583-586.1996.

Abstract

The insecticidal activity of toxins CryIAa, CryIAb, and CryIAc against Lymantria dispar (gypsy moth) and Bombyx mori (silkworm) was examined by force-feeding bioassays. Toxin CryIAa exhibited higher toxicity than toxins CryIAb and CryIAc for L. dispar and B. mori. To evaluate possible synergism among these toxins, bioassays were performed with mixtures of CryIAa and CryIAb, CryIAb and CryIAc, and CryIAa and CryIAc. Expected toxicity was calculated from the activity of each individual toxin and its proportion in the mixture by using the equation described by Tabashnik (B. E. Tabashnik, Appl. Environ. Microbiol. 58:3343-3346, 1992). Observed 50% growth-inhibitory doses were calculated from mixing experiments by probit analysis. In L. dispar bioassays, synergism was observed with a mixture of CryIAa and CryIAc while a mixture of CryIAa and CryIAb exhibited an antagonistic effect. No synergistic effect on B. mori was observed with any toxin combination. Voltage clamping assays of isolated L. dispar midguts also demonstrated that the mixture of CryIAa and CryIAc induced a greater slope of inhibition of short circuit current than did other toxin combinations.

摘要

通过强制喂食生物测定法检测了毒素CryIAa、CryIAb和CryIAc对舞毒蛾和家蚕的杀虫活性。毒素CryIAa对舞毒蛾和家蚕的毒性高于毒素CryIAb和CryIAc。为了评估这些毒素之间可能存在的协同作用,对CryIAa与CryIAb、CryIAb与CryIAc以及CryIAa与CryIAc的混合物进行了生物测定。使用Tabashnik(B. E. Tabashnik,《应用与环境微生物学》58:3343 - 3346,1992年)描述的公式,根据每种单一毒素的活性及其在混合物中的比例计算预期毒性。通过概率分析从混合实验中计算出观察到的50%生长抑制剂量。在舞毒蛾生物测定中,观察到CryIAa与CryIAc的混合物具有协同作用,而CryIAa与CryIAb的混合物表现出拮抗作用。对于任何毒素组合,在家蚕中均未观察到协同作用。对分离的舞毒蛾中肠进行的电压钳测定还表明,CryIAa与CryIAc的混合物比其他毒素组合诱导的短路电流抑制斜率更大。

相似文献

1
Synergistic effect of the Bacillus thuringiensis toxins CryIAa and CryIAc on the gypsy moth, Lymantria dispar.
Appl Environ Microbiol. 1996 Feb;62(2):583-6. doi: 10.1128/aem.62.2.583-586.1996.
5
Exploration of receptor binding of Bacillus thuringiensis toxins.
Mem Inst Oswaldo Cruz. 1995 Jan-Feb;90(1):75-9. doi: 10.1590/s0074-02761995000100017.
6
Domain III exchanges of Bacillus thuringiensis CryIA toxins affect binding to different gypsy moth midgut receptors.
Biochem Biophys Res Commun. 1995 Nov 2;216(1):306-12. doi: 10.1006/bbrc.1995.2625.
9
Purification and partial amino acid sequences of the binding protein from Bombyx mori for CryIAa delta-endotoxin of Bacillus thuringiensis.
Comp Biochem Physiol B Biochem Mol Biol. 1998 May;120(1):197-204. doi: 10.1016/s0305-0491(98)10009-3.

引用本文的文献

1
Toxicity of Cry- and Vip3Aa-Class Proteins and Their Interactions against (Lepidoptera: Noctuidae).
Toxins (Basel). 2024 Apr 16;16(4):193. doi: 10.3390/toxins16040193.
2
Interaction of insecticidal proteins from Pseudomonas spp. and Bacillus thuringiensis for boll weevil management.
PLoS One. 2023 Nov 30;18(11):e0294654. doi: 10.1371/journal.pone.0294654. eCollection 2023.
4
Bacterial Vegetative Insecticidal Proteins (Vip) from Entomopathogenic Bacteria.
Microbiol Mol Biol Rev. 2016 Mar 2;80(2):329-50. doi: 10.1128/MMBR.00060-15. Print 2016 Jun.
5
Bacillus thuringiensis toxins: an overview of their biocidal activity.
Toxins (Basel). 2014 Dec 11;6(12):3296-325. doi: 10.3390/toxins6123296.
7
Evolution and the microbial control of insects.
Evol Appl. 2012 Jul;5(5):455-69. doi: 10.1111/j.1752-4571.2012.00269.x. Epub 2012 May 31.
8
Testing pollen of single and stacked insect-resistant Bt-maize on in vitro reared honey bee larvae.
PLoS One. 2011;6(12):e28174. doi: 10.1371/journal.pone.0028174. Epub 2011 Dec 16.
10
Risk assessment of toxins derived from Bacillus thuringiensis-synergism, efficacy, and selectivity.
Environ Sci Pollut Res Int. 2010 Mar;17(3):791-7. doi: 10.1007/s11356-009-0208-3. Epub 2009 Jun 26.

本文引用的文献

1
Specificity of Activated CryIA Proteins from Bacillus thuringiensis subsp. kurstaki HD-1 for Defoliating Forest Lepidoptera.
Appl Environ Microbiol. 1991 Jun;57(6):1650-1655. doi: 10.1128/aem.57.6.1650-1655.1991.
5
Cleavage of structural proteins during the assembly of the head of bacteriophage T4.
Nature. 1970 Aug 15;227(5259):680-5. doi: 10.1038/227680a0.
9
Location of the Bombyx mori specificity domain on a Bacillus thuringiensis delta-endotoxin protein.
Proc Natl Acad Sci U S A. 1989 Jun;86(11):4037-41. doi: 10.1073/pnas.86.11.4037.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验